Study of Magnesium Photocathodes for **Superconducting RF Photoinjectors**

R. Xiang^{*1}, A. Arnold¹, P. Lu^{1,2}, P. Murcek¹, J. Teichert¹, H. Vennekate^{1,2} ¹Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany ² TU Dresden, 01069 Dresden, Germany HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Semiconductor photocathodes

high quantum efficiency (QE) less laser power required high risk of contamination required vacuum ~10⁻¹¹ mbar **Metallic photocathodes**

long lifetime, fast response good compatibility with Nb cavity Cu cathode 2 x 10⁻⁵ @ 258 nm Mg cathode QE \sim 10⁻³ @ 258 nm

SRF Gun II with Mg cathode

- 1.3 GHz 3½ cell cavity
- I_{dark} < 50 nA @ 7 [†]MV/m
- drive laser: 258 nm, 100 kHz, Gaussian
- DC bias on cathode

(photoemission in gun 0.1 W/mm²)

cleaning with UV drive laser in transport chamber special optical set-up for focusing and scanning

- excellent QE, reaches 0.3 %
- experiment very well repeatable
- cleaned Mg is very sensitive, stable if $p \le 10^{-9}$ mbar
- increase of roughness due to local surface melting
- very time consuming, ca. 5 h for 4 mm spot

Alternatives

Mg cathode cleaning

Cs2Te photo cathodes $QE > 10 \% (\checkmark)$

- QE~10⁻³ @ 258nm, stable, long lifetime in SRF gun
- small dark current, about 40 nA @ 7 MV/m
- Iow thermal emittance

- heat treatment (
- Ar⁺ ion beam sputtering
- KrF excimer laser cleaning

GaN photo cathodes

highest QE of 40 % robust

collaboration with Univ. Siegen

in prep lab but:

- transport problems - lifetime in gun
- overheating !

Photocathodes in SRF Gun II

Туре	Time	QE	Q / I _{CW}	Remarks
Cu	June 14 – Feb. 15	2x10 ⁻⁵	3 pC / 300 nA	Inserted during clean-room assembly of the gun
Cs ₂ Te	Feb. 15	² %↓ _{0 %}		strong multipacting & field emission cavity polution
Cu	Mar. 15 – Feb. 16	2x10 ⁻⁵	3 pC / 300 nA	high dark current from cavity, no multipacting
Mg (#201)	Mar. 16 – Aug. 16	0.2 %	200 pC / 20 µA	no multipacting, no dark current from Mg, stable (user) operation, no QE decrease
Mg (#207)	Nov. 16 – Dec. 16	0.1 %	80 pC / 8 μA	no multipacting, no dark current from Mg, stable (user) operation, no QE decrease
Cs₂Te	Feb. 17	1.7 %	300 pC / 30 μA	no multipacting, no dark current from PC, QE drop down after 2 weeks , overheating!
Mg (#207)	Mar. 17 – May 17	0.2 %	150 pC / 15 μΑ	cathode laser cleaned 3rd time, stable beam operation
Cs ₂ Te (#2017.3.10)	June 17	1.3 %	15 pC / 200 μA	13 MHz CW ,no multipacting, no dark current again QE drop down after 2 weeks, overheating! showed same behavior as Cs2Te in Febr. 2017
Mg (#214)	August 17 – now	0.3 %	300 pC/ 30 μΑ	no multipacting, no dark current from Mg, stable operation up to 300 pC / 100 kHz gradient 8 MV/m (20.5 MV/m peak) Ekin = 4 MeV

• with current stabilization – compensation of long-term drifts

• Cathode current -> NI cRIO -> laser polarizer

Acknowledgement

We would like to thank the whole ELBE team for their help with this project. The work was partly supported by the European Community under FP7 program (EuCARD-2, contract No.312453), and the German Federal Ministry of Education and Research (BMBF) grant 05K2016-HOPE II, and DFG grant HI²PE 4033122102...

References

[1] J. Teichert et al., in Proc. FEL'14, pp. 881-884. [2] A.Arnold, Nucl. Instr. Meth. A 93 (2008) 57. [3] A. Arnold et al., in Proc. LINAC'14, pp. 578-580. [4] H. Vennekate et al., in Proc. SRF'15, 13.-18.10.2015, pp. 1235-1239. [5] R. Xiang, J. Teichert, Physics Procedia 77 (2015), pp. 58-65.

* Contact: Rong Xiang • Institute of Radiation Physics, Radiation Source ELBE • Email: r.xiang@hzdr.de • www.hzdr.de

