Search for high mass Higgs boson production in final states with b-quarks with the LHC Run II data with CMS

Rostyslav Shevchenko

DESY, CMS

LHC physics discussion

07/05/2018

MSSM H→bb

- Motivation for the BSM Higgs searches
- * 13 TeV measurements so far indicate consistency of the h(125) with the Standard Model (SM)
- * However, several phenomena are not explained by the SM:
 - * Dark matter and energy, gravity, neutrino masses...

* h(125) well may be only one member of an extended Higgs Sector:
 * direct searches for Heavy Higgs bosons to check this!
 * Heavy neutral Higgs bosons predicted by several BSM extensions:

- Motivation for the BSM Higgs searches
- * 13 TeV measurements so far indicate consistency of the h(125) with the Standard Model (SM)
- * However, several phenomena are not explained by the SM:
 - * Dark matter and energy, gravity, neutrino masses...

- * h(125) well may be only one member of an extended Higgs Sector:
 - # direct searches for Heavy Higgs bosons to check this!
- * Heavy neutral Higgs bosons predicted by several BSM extensions:

***** Higgs sector of CP-conserving **Two Higgs Doublet Model** (2HDM):

* α - mixing angle between h and H

2 doublets	CP-even	CP-odd	Charged	
$\Phi_2 \Phi_1$	h, H	А	H^{\pm}	(Π, Η, Α) ≡ φ
tan β - ratio of vacuum expectation values ;			other	

*** 4 types of 2HDM** with natural flavour and CP conservation, depending on how the 2 Higgs doublet fields couple to SM particles

parameters

Minimal Supersymmetric Standard Model (MSSM)

- * Two complex Higgs doublets as in 2HDM Type II, + additional constraints from SUSY
 - ***** Two parameters at tree-level:
- LHCHXSWG-2015-002 m_{H⁺/H/h} [GeV] m_{H} (tan $\beta = 3$) --- m_{μ} (tan β = 10) 500 $m_{\rm h}$ (tan $\beta = 3$) 400 m_H⊮ 300 200 125 **Higher order** corrections 100 80 70 60 50 50 60 100 200 300 400 m₄ [GeV]
- m_A and tanβ

$$\begin{split} m_{H^{\pm}}^2 &= m_A^2 + m_W^2 \\ m_{H,h}^2 &= \frac{1}{2} (m_A^2 + m_Z^2 \pm \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 cos^2 2\beta}) \\ tan\alpha &= \frac{-(m_A^2 + m_Z^2) sin2\beta}{(m_Z^2 - m_A^2) cos2\beta + \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 cos^2 2\beta}} \end{split}$$

* MSSM features:

- * Solve hierarchy problem
- * introduce dark-matter candidate
- Compatibility with h(125) achieved by the HO corrections:
 - * m_h increased up to 30%
- * Variety of benchmark scenarios to test different phase-space properties:

* m_h^{mod+} ; low- $\tilde{\tau}$, low- \tilde{t} , hMSSM*...

* - M. Carena et al.

Flipped

Type II

- U \mathbf{D}_2]] * A/H $\rightarrow \tau \tau$ decay is suppressed Ľ d d *** 2 decay channels dominate** at high tan β : $A/H \rightarrow b\overline{b}, A \rightarrow Zh(not shown here)$ Flipped Type-II m_A = 400 GeV $m_A = 400 \text{ GeV}$ $\cos(\beta - \alpha) = 0$ $\cos(\beta - \alpha) = 0$ A boson A boson 10⁰ ≡ 10^{0} tt t tt bb bb 10 10 ττ arXiv:1310.0763 arXiv:1310.0763 $BR(A \rightarrow X)$ 10^{-2} 10^{-2} gg gg SS 10 SS μμ ττ 10^{-4} 10^{-4} cc yy $\gamma\gamma$ сс 10^{-1} 10^{-5} 10 10 tanβ tanβ Acknowledgments: Stefan Liebler, Oscar Stal **BSM** Híggs searches Rostyslav Shevchenko 07.05.2018
- * Enhanced b-couplings in various scenarios within 2HDM and MSSM:
 - * Moreover in Flipped scenario leptons are disfavored:

 $BR(A \to X)$

Search for the b-associated production of degenerate H and A in higher mass region:

* improved background control

*** Unique** analysis at LHC

* 7+8 TeV analysis achieved best sensitivity in this channel to date:

improve further with 13 TeV data

13 TeV analysis overview: trigger

- Main challenge: huge background rate from QCD multi jet production
- Dedicated high pT double b-jet trigger developed at DESY

***Collected:**

*****2016 pp at 13 TeV *****∫L dt: 35.7 fb⁻¹

Impact on the analysis				
Double jet with p _T > 100 GeV	limit sensitivity for low MA/H			
Δŋ ₁₂ < 1.6	better S vs Bg separation			
double b-jet	reduce non bb background			

* Signal reconstructed from the invariant mass of the two leading b-jets (M₁₂)

*Monte Carlo: Pythia 8 LO + MG5 NLO for the corrections

*Signal masses: M_{A/H} = [300;1300]

***Sensitive** starting from $M_{A/H} = 300 \text{ GeV}$, because of the high p_T trigger threshold

★Effect of the trigger p_T turn-on and triple b tagging

*Efficiency up to 1.5% at 500 GeV mass point

*Model multi jet background using analytical function

***Blinded analysis** \rightarrow strategy and techniques developed and validated at control region

*Find control region with a shape of M₁₂ similar to the signal region

*Defined by events in which the 3rd jet is light flavour

*Main challenge:

*precise fit of a large mass range including the background peak region
 *Divide M₁₂ range into 3 sub-ranges to reduce the bias from the choice of the function and simplify the fitting procedure

Background estimation: signal region

Parameters of the background pdfs allowed to change between CR and SR:
Data is well fitted with functions developed in the CR

***No excess** found → compute Upper Limits

*****UL are calculated using the **profile likelihood method** with systematic uncertainties addressed by the nuisance parameters

systematic uncertainties	Size	
kinematic trigger efficiency, p/jet	0 - 7 %	h
jet energy scale / resolution, p/jet	1 - 6 %	<i>dominant</i>
b-tag efficiency(b/c), p/jet	2 - 5 %	J
b-tag efficiency(udsg), p/jet	< 0.3 %	
pileup	4,6 %	
luminosity	2,5 %	
online b-tag efficiency, p/jet	0.8-1.3 %	
background specific, p/sub-range	100 %, 25 % ,20 % Δμ	<u>dominant</u>
pdf + α_s , mssm/2hdm cross-section	1 - 6 %	
QCD scale, mssm/2hdm cross-section	1 - 10 %	
NLO correction for the selection eff.	5 %	

*Systematic uncertainties:

*normalisation: log-normal prior;

***shape**: gaussian prior.

Observed limits are translated into exclusion limits on MSSM parameters - tanβ and MA
 Interpretation within the mh^{mod+} and hMSSM benchmark scenarios^{*}.

* Now also hMSSM interpretation: lower tanβ limits than m_h^{mod+} at large M_A

* - τ -phobic, light- \tilde{t} and light- $\tilde{\tau}$ in the backup Rostyslav Shevchenko 14

Exclusion limits** on tanβ vs M_A and cos(β-α) for 2HDM Flipped and Type-II models: **values of cos(β-α) = 0.1 and M_A = 300 GeV were chosen to compare with ATLAS A \rightarrow

Zh analysis [0]

*Our measurements are uniquely sensitive for high values of tanβ and <u>small [cos(β-α)]</u> (alignment limit):

*this is where h couplings are SM-like

[0] - ATLAS collab., arXiv:1712.06518

***** Exclusion limits on tan β vs M_A and cos(β - α) :

*values of $cos(\beta-\alpha) = 0.1$ and $M_A = 300$ GeV were chosen to compare with ATLAS A \rightarrow Zh analysis [0]

[0] - ATLAS collab., arXiv:1712.06518

BSM Híggs searches

 A new search for high mass Higgs bosons in the bb decay channel in association with bquarks was presented
 *unique analysis at LHC

Results interpreted in context of MSSM:
 *improved limits in mh^{mod+} and newly hMSSM interpretation

★ Analysis put strong constraints on the relatively unexplored «Flipped» 2HDM scenario:
 ★Complements ATLAS measurements of A→Zh;
 ★Cover alignment limit for large range of tanβ.

*****Paper submission coming soon

BACKUP

MSSM H→bb

Two Higgs Doublet Model (2HDM)

Higgs sector structure and parameters:

$$\Phi_{1} = \begin{pmatrix} w_{1}^{+} \\ \frac{v_{1}+h_{1}+iz_{1}}{\sqrt{2}} \end{pmatrix}$$

$$(h_{1}^{+})_{2} = R(\alpha) \begin{pmatrix} H \\ h \\ h \end{pmatrix} \begin{pmatrix} w_{1}^{\pm} \\ w_{2}^{\pm} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{\pm} \\ H^{\pm} \\ z_{2} \end{pmatrix} = R(\beta) \begin{pmatrix} Z_{1} \\ Z_{2} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{0} \\ A \end{pmatrix}$$

$$\Phi_{2} = \begin{pmatrix} w_{2}^{+} \\ \frac{v_{2}+h_{2}+iz_{2}}{\sqrt{2}} \end{pmatrix}$$

$$(h_{1}^{+})_{2} = R(\alpha) \begin{pmatrix} H \\ h \\ z_{2} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{0} \\ A \end{pmatrix}$$

$$(CP-even \quad Charged \quad CP-odd$$

$$(DP-odd \quad CP-odd \quad CP-od$$

4 types of 2HDM with natural flavour and CP conservation, depending on how the 2 Higgs doublet fields couple to SM particles

★Two Higgs Doublets Model (2HDM) has a large number of free parameters that allow to find specific scenario where A/H→bb will dominate among the other channels.

*Higgs sector of 2HDM models described by parameters: 4 Higgs masses, tan β(ratio of vacuum expectation values vev) and α mixing between the two neutral CP even states h,H

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos \alpha / \sin \beta$			
ξ^d_h	$\cos \alpha / \sin \beta$	$-\sinlpha/\coseta$	$\cos lpha / \sin eta$	$-\sinlpha/\coseta$
ξ_h^ℓ	$\cos \alpha / \sin \beta$	$-\sinlpha/\coseta$	$-\sinlpha/\coseta$	$\cos lpha / \sin eta$
ξ^u_H	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin \alpha / \sin \beta$
ξ^d_H	$\sin lpha / \sin eta$	$\cos \alpha / \cos \beta$	$\sin lpha / \sin eta$	$\cos \alpha / \cos \beta$
ξ_{H}^{ℓ}	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$
ξ^u_A	$\cot eta$	$\cot eta$	\coteta	$\cot eta$
ξ^d_A	$-\coteta$	aneta	$-\coteta$	aneta
ξ^{ℓ}_A	$-\cot\beta$	aneta	aneta	$-\cot \beta$

х g_{sm}

- * Type I: One doublet couples to V("fermiophobic"), one to fermions
- *** Type II**: "MSSM like" model, one doublet couples to up-type quarks, one to
 *****down-type quarks
- * Lepton-specific: Higgs bosons have same couplings to quarks as type I and to leptons as in type II

*Flipped: Higgs bosons have same couplings to quarks as in type II and to leptons as in type I

*Standard Novosibirsk function has been extended to **Super**Novosibirsk function:

$$F(x) = N \cdot exp(-\frac{1}{2\sigma_0^2} ln^2 (1 - \frac{\eta}{\sigma_E} \cdot (\sum_{i=1}^n p_{(i-1)} \cdot (x - x_p)^i) - \frac{\sigma_0^2}{2}))$$

$$\sigma_0 = (2/\epsilon) sinh^{-1} (\eta \epsilon/2)$$

$$\epsilon = 2\sqrt{ln4}) = 2.36$$

*****p₀ = 1;

*****η - tail parameter;

 $*\sigma_{E}$ - width;

*x_p - peak position

***** F(x) = 0.5*Erf(P₀*(x-P₁))+1) *****where Erf(x) = 2/√π * ∫e^{-t^2} dt — integral between 0 to x

*P₀ indicates slope of this turn-on function and P₁ is turn-on point

0.5*(TMath::Erf(0.05*(x-205))+1)

*Calculated separately for each mass point and for different amount of injected signal

*Obtained results:

*****sub-range 1: 100%

*****sub-range 2: 25%

functions using "Toy MC" method: ***generate** toy **Bg** sample with *pdf*₁;

***inject** certain amount of signal: S

***fit S+Bg** distribution with pdf_2

$$m{B}_{M_{\mathrm{H/A}}} = \left\langle rac{N_S^{fit} - N_S^{toy}}{\sigma_S^{fit}}
ight
angle.$$

***Choice** of the particular fit function affects estimated

signal:

***Estimated** by comparison of S+Bg fits from different

*bias - measure of this effect:

Expected limits are translated into exclusion limits on MSSM parameters - tanβ and MA
 Interpretation performed using NNLO cross sections in the Santander matching within the light-τ̃, light-t̃ and τ-phobic benchmark scenarios

*13 TeV limits are better than at 7 + 8 TeV

CM. 13 TeV analysis overview: trigger

BSM Híggs searches

07.05.2018

Rostyslav Shevchenko