Status and (some) recent developments in Higgs physics in the SM and in the MSSM

Emanuele A. Bagnaschi (DESY Hamburg)

07 May 2018 LHC Physics discussion DESY, Hamburg

emanuele.bagnaschi@desy.de

Introduction

Experimental Higgs physics at the LHC

- Rich experimental program in Higgs Physics see the previous talks by M. Shevchenko and K. Brendlinger.
- Characterization of both total rates and differential cross-sections at an advanced stage.

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 1/23

Experimental Higgs physics at the LHC

- Rich experimental program in Higgs Physics see the previous talks by M. Shevchenko and K. Brendlinger.
- Characterization of both total rates and differential cross-sections at an advanced stage.

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 1/23

BSM physics in the Higgs sector

Characterization of the boson at 125 GeV

- Deviation of the Higgs couplings from the SM predictions.
- New states in the loops?

The differential measurements can probe NP differently from the inclusive results.

[ATLAS JHEP 01 (2018) 055]

New Higgs states

- Extended Higgs sector?
- Simple extension: Two Higgs Doublet Model (e.g. MSSM).

Precise predictions required to properly recast experimental results in NP models.

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 2/23

Higgs production channels at the LHC

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 3/23

Gluon fusion

- Inclusive cross section known in the SM @ N³LO QCD in the HQEFT $(m_t \rightarrow \infty)$ [Anastasiou et al, ...] [1].
- Differential results for the inclusive process = available up to NNLO, pt resummation [Catani et al '03, ...]
- SM process known up to NLO; higher order . terms in the expansion $1/m_t$ known [Marzani et al '08, Harlander et al '10, ...] [2].
- Soft-resummation available up to N³LL ([De . Florian et al '14, ..., [3]) in the HQEFT.
- H + j known up to NNLO in the . HQEFT [Boughezal et al, ...].
- Merged/matched MCs [NNLOPS, POWHEG, . MG5 aMC@NLO, SHERPA, ...]

- Result first published in [Anastasiou et al. '15], using a threshold expansion.
- Uncertainty estimation presented in [Anastasiou et al. '16].
- This year, the full computation was presented [Mistlberger '18], removing one of the item in the uncertainty.
- The code iHixs2 was also released [Dulat et al '18].

-1.15 pb +0.21%

-2.37%

 $\pm 0.37\%$

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 5/23

 $\pm 1\%$

 $\pm 0.83\%$

 $\pm 1\%$

 $\pm 1.16\%$

- Result first published in [Anastasiou et al. '15], using a threshold expansion.
- Uncertainty estimation presented in [Anastasiou et al. '16].
- This year, the full computation was presented [Mistlberger '18], removing one of the item in the uncertainty.
- The code iHixs2 was also released [Dulat et al '18].

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 5/23

- Result first published in [Anastasiou et al. '15], using a threshold expansion.
- Uncertainty estimation presented in [Anastasiou et al. '16].
- This year, the full computation was presented [Mistlberger '18], removing one of the item in the uncertainty.
- The code iHixs2 was also released [Dulat et al '18].

$\delta(scale)$	$\delta(trunc)$	δ (PDF-TH)	$\delta(EW)$	$\delta(t, b, c)$	$\delta(1/m_t)$
$^{+0.13} { m ~pb} \\ -1.20 { m ~pb}$	0	$\pm 0.56~{ m pb}$	$\pm 0.49~{ m pb}$	$\pm 0.41 \ \text{pb}$	$\pm 0.49~{ m pb}$
+0.28% -2.50%	0%	±1.16%	$\pm 1\%$	±0.85%	$\pm 1\%$

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 5/23

- Result first published in [Anastasiou et al. '15], using a threshold expansion.
- Uncertainty estimation presented in [Anastasiou et al. '16].
- This year, the full computation was presented [Mistlberger '18], removing one of the item in the uncertainty.
- The code iHixs2 was also released [Dulat et al '18].

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 5/23

- Presented in [Bison et al. '17], based on the formalism of [Monni et al. '16] (see also Ebert et al. '17 for another approach to p_T space resummation).
- Nearly consistent N3LL resummation (missing four-loop cusp anomalous-dimension).

- Matched to NNLO result from [Caola et al.'16], N3LO normalization.
- N3LL is of order 10% 20% around the Sudakov region vs pure NNLL.
- NNLO+N3LL differs of several percent below the Sudakov peak, the rest is similar to NNLO+NNLL.

- Presented in [Bison et al. '17], based on the formalism of [Monni et al. '16] (see also Ebert et al. '17 for another approach to p_T space resummation).
- Nearly consistent N3LL resummation (missing four-loop cusp anomalous-dimension).

- Matched to NNLO result from [Caola et al.'16], N3LO normalization.
- N3LL is of order 10% 20% around the Sudakov region vs pure NNLL.
- NNLO+N3LL differs of several percent below the Sudakov peak, the rest is similar to NNLO+NNLL.

- Presented in [Bison et al. '17], based on the formalism of [Monni et al. '16] (see also Ebert et al. '17 for another approach to p_T space resummation).
- Nearly consistent N3LL resummation (missing four-loop cusp anomalous-dimension).

- Matched to NNLO result from [Caola et al.'16], N3LO normalization.
- N3LL is of order 10% 20% around the Sudakov region vs pure NNLL.
- NNLO+N3LL differs of several percent below the Sudakov peak, the rest is similar to NNLO+NNLL.

- Very recent results presented in [Chen et al., '18].
- Resummation at N3LL using SCET.
- Uses the recent computation of the tree-loop rapidity anomalous dimension [Li et al. '16 and '16].
- Higher "resolution" with respect to the RADISH result.
- Perturbative uncertainties reduced to $\leq 6\%$ for $5 < p_T < 35$ GeV, then they rise to $\pm 10\%$ and then decrease again.

- Very recent results presented in [Chen et al., '18].
- Resummation at N3LL using SCET.
- Uses the recent computation of the tree-loop rapidity anomalous dimension [Li et al. '16 and '16].
- Higher "resolution" with respect to the RADISH result.
- Perturbative uncertainties reduced to $\leq 6\%$ for $5 < p_T < 35$ GeV, then they rise to $\pm 10\%$ and then decrease again.

Understanding the mass effects at NLO in H+jet: top quark

- Numerical approach based on SecDec by [Jones et al. '18].
- Expansion of the 2-loop integrals at $\mathcal{O}(m_t^2/p_t^2)$, $\mathcal{O}((m_H^2/p_t^2)^0)$ by [Kudashkin et al. '17, Lindert et al. '18].

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 8/23

Understanding the mass effects at NLO in H+jet: top quark

- Numerical approach based on SecDec by [Jones et al. '18].
- Expansion of the 2-loop integrals at $\mathcal{O}(m_t^2/p_t^2)$, $\mathcal{O}((m_H^2/p_t^2)^0)$ by [Kudashkin et al.

'17, Lindert et al. '18].

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 8/23

Understanding the mass effects at NLO in H+jet: bottom quark

- Expansion at $\mathcal{O}(m_b^2/p_t^2)$ presented in [Melnikov et al., '16, '17].
- Approach valid down to $p_T \simeq 10$ GeV.
- Numerical results from [Lindert et al., '17].

Large QCD corrections, but rather flat (no change in the shape).

Status and (some) recent developments in Higgs physics in the SM and in the MSSM Emanuele A. Bagnaschi (DESY) 9/23

Understanding the mass effects at NNLL+NLO in H+jet: top+bottom quark

- Results valid in the range $m_b < p_T < m_H$, presented in [Caola et al., '18]; study focused on theory uncertainties.
- O(20%) uncertainty for the top+bottom interference.
- Accurate at NNLL+NLO; still open problem of the resummation of log(p_T/m_b),log(m_H/m_b).

Status and (some) recent developments in Higgs physics in the SM and in the MSSMEmanuele A. Bagnaschi (DESY) 10/23

Gluon fusion in the MSSM

SUSY

- Squark diagrams known up to NLO [4, 5, 6, 7].
- Complete NLO results for the squark-gluino contribution known only from semi-numeric computation or using Taylor/asymptotic expansions publicly available [Harlander et al '03, Degrassi et al '08,'10,'11,'12] [8].
- Need resummation of tan β enhanced contribution proportional to the bottom Yukawa [9]

$$\begin{split} \widetilde{Y_b}^h &=\; \frac{Y_b^h}{1+\Delta_b} \left(1-\Delta_b \, \frac{\cot \alpha}{\tan \beta}\right) \\ \widetilde{Y_b}^H &=\; \frac{Y_b^H}{1+\Delta_b} \left(1+\Delta_b \, \frac{\tan \alpha}{\tan \beta}\right) \\ \widetilde{Y_b}^A &=\; \frac{Y_b^A}{1+\Delta_b} \left(1-\Delta_b \, \cot^2 \beta\right) \end{split}$$

- Resummation of non-abelian log(m_b/m_h) still missing. Resummation of Abelian logs computed [Melnikov et al '16].
- Codes: SusHi, MoRe-SusHi, POWHEG-BOX/gg_H_MSSM, aMC_SusHi

Status and (some) recent developments in Higgs physics in the SM and in the MSSMEmanuele A. Bagnaschi (DESY) 11/23

Gluon fusion in the MSSM

SUSY

- Squark diagrams known up to NLO [4, 5, 6, 7].
- Complete NLO results for the squark-gluino contribution known only from semi-numeric computation or using Taylor/asymptotic expansions publicly available [Harlander et al '03, Degrassi et al '08,'10,'11,'12] [8].
- Need resummation of tan β enhanced contribution proportional to the bottom Yukawa [9]

$$\begin{split} \widetilde{Y_b}^h &=\; \frac{Y_b^h}{1+\Delta_b} \left(1-\Delta_b \, \frac{\cot \alpha}{\tan \beta}\right) \\ \widetilde{Y_b}^H &=\; \frac{Y_b^H}{1+\Delta_b} \left(1+\Delta_b \, \frac{\tan \alpha}{\tan \beta}\right) \\ \widetilde{Y_b}^A &=\; \frac{Y_b^A}{1+\Delta_b} \left(1-\Delta_b \, \cot^2 \beta\right) \end{split}$$

- Resummation of non-abelian log(m_b/m_h) still missing. Resummation of Abelian logs computed [Melnikov et al '16].
- Codes: SusHi, MoRe-SusHi, POWHEG-BOX/gg_H_MSSM, aMC_SusHi

Status and (some) recent developments in Higgs physics in the SM and in the MSSMEmanuele A. Bagnaschi (DESY) 11/23

Gluon fusion in the MSSM

SUSY

- Squark diagrams known up to NLO [4, 5, 6, 7].
- Complete NLO results for the squark-gluino contribution known only from semi-numeric computation or using Taylor/asymptotic expansions publicly available [Harlander et al '03, Degrassi et al '08,'10,'11,'12] [8].
- Need resummation of tan β enhanced contribution proportional to the bottom Yukawa [9]

$$\begin{split} \widetilde{Y_b}^h &=\; \frac{Y_b^h}{1+\Delta_b} \left(1-\Delta_b \, \frac{\cot \alpha}{\tan \beta}\right) \\ \widetilde{Y_b}^H &=\; \frac{Y_b^H}{1+\Delta_b} \left(1+\Delta_b \, \frac{\tan \alpha}{\tan \beta}\right) \\ \widetilde{Y_b}^A &=\; \frac{Y_b^A}{1+\Delta_b} \left(1-\Delta_b \, \cot^2 \beta\right) \end{split}$$

- Resummation of non-abelian log(m_b/m_h) still missing. Resummation of Abelian logs computed [Melnikov et al '16].
- Codes: SusHi, MoRe-SusHi, POWHEG-BOX/gg_H_MSSM, aMC_SusHi

Status and (some) recent developments in Higgs physics in the SM and in the MSSMEmanuele A. Bagnaschi (DESY) 11/23

Scale uncertainty for gluon fusion

 Non trivial dependence on the parameters. For h up to 35%, for H up to 50% and for A up to 30%.

Status and (some) recent developments in Higgs physics in the SM and in the MSSMEmanuele A. Bagnaschi (DESY) 12/23

Validity of the SUSY expansions at NLO

- Contributions from diagrams with quark-squark-gluino are available only as an expansion (in the the limit m_h → 0 for h and as an expansion in the inverse SUSY-particle masses for H and A).
- We compute a test factor $T = A_{\tilde{q}}^{1l}/A_{\tilde{q}}^{1l,exp}$, where $q_i = \{\tilde{b}, \tilde{t}\}$ and $A_{\tilde{q}}^{1l-exp}$ is the result by keeping just the leading $\mathcal{O}(m_{\tilde{q}}^{-2})$.
- We multiply the 2-loop stop and sbottom approximate contributions by T and take the resulting value for the cross section as a probe of the uncertainty in the expansion.

The Higgs p_T^H in the MSSM

 $m_b^{\text{mod}+}$ scenario, tan $\beta = 17$, $m_A = 500$ GeV, $m_H = 499.9$ GeV

• $\pm 40\%$ variation between the "normal" scale choices and the specific ones.

[EB et al. '11; EB, Vicini, '15; EB, Harlander, Mantler, Wiesemann, Vicini '15]

Status and (some) recent developments in Higgs physics in the SM and in the MSSMEmanuele A. Bagnaschi (DESY) 14/23

Higgs p_T and MSSM $A/H \rightarrow \tau \tau$ searches in CMS

- CMS published (1803.06553) its updated $H/A \rightarrow \tau \tau$ performed using a reweighting procedure to account for the different acceptance due to the BSM nature of the Higgs states.
- Work performed in the context of the Higgs XS working group, in collaboration with S. Liebler (KIT) and R. Wolf (CMS) and collaborators.
- POWHEG-BOX used for the shape and SusHi for the total inclusive cross-sections.

Status and (some) recent developments in Higgs physics in the SM and in the MSSMEmanuele A. Bagnaschi (DESY) 15/23

Vector Boson Fusion

The SM

- Know up to NNLO-QCD differentially using a structure function approach[Bolzoni et al '10, ...] [10].
- Non-factorizing contribution shown to be small [Harlander et al '08] [11, 10, 12].
- Codes: HAWK, POWHEG, MG5_aMC@NLO, VBF@NNLO, proVBFH, VBFNLO.

 Computation at NNLO possible only in the DIS/VBF approximation.

Vector Boson Fusion

The SM

- Know up to NNLO-QCD differentially using a structure function approach[Bolzoni et al '10, ...] [10].
- Non-factorizing contribution shown to be small [Harlander et al '08] [11, 10, 12].
- Codes: HAWK, POWHEG, MG5_aMC@NLO, VBF@NNLO, proVBFH, VBFNLO.

[Cruz-Martinez et al., '18]

 Independent result. Found error in the NLO H+3jet virtual corrections in the first computation.

Vector Boson Fusion

The MSSM

- Known up to NLO in SUSY-QCD (also NLO-EW available) [Hollik et al 08', Figy et al 10']
- Small impact on the total cross section.
- In the decoupling limit, h is SM-like and the H couples only weakly with vector bosons. No AVV coupling at tree level.

- NLO-QCD corrections as DY (30% of the total cross section) [13].
- QCD corrections known up to NNLO [14].
- New channel, gg → ZH opens up NNLO and yields a large contribution (20% of the total cross section); now known at HQEFT-NNLO[Altenkamp et al '13] [15].
- Codes: HVNNLO, MCFM, VHNNLO, VH@NNLO, NNLOPS, POWHEG, MG5_aMC@NLO

- NLO-QCD corrections as DY (30% of the total cross section) [13].
- QCD corrections known up to NNLO [14].
- New channel, gg → ZH opens up NNLO and yields a large contribution (20% of the total cross section); now known at HQEFT-NNLO[Altenkamp et al '13] [15].
- Codes: HVNNLO, MCFM, VHNNLO, VH@NNLO, NNLOPS, POWHEG, MG5_aMC@NLO

[Spira '16]

- NLO-QCD corrections as DY (30% of the total cross section) [13].
- QCD corrections known up to NNLO [14].
- New channel, gg → ZH opens up NNLO and yields a large contribution (20% of the total cross section); now known at HQEFT-NNLO[Altenkamp et al '13] [15].
- Codes: HVNNLO, MCFM, VHNNLO, VH@NNLO, NNLOPS, POWHEG, MG5_aMC@NLO

[Granata et al. '17]

- NLO-QCD corrections as DY (30% of the total cross section) [13].
- QCD corrections known up to NNLO [14].
- New channel, gg → ZH opens up NNLO and yields a large contribution (20% of the total cross section); now known at HQEFT-NNLO[Altenkamp et al '13] [15].
- Codes: HVNNLO, MCFM, VHNNLO, VH@NNLO, NNLOPS, POWHEG, MG5_aMC@NLO

The MSSM

- As for VBF, in the decoupling limit only sensible production rate is for h.
- No pseudoscalar production tree level.
- Relative NLO-QCD corrections are the same as the SM.
- At NNLO, the gg → ZH contribution will be different due to the different top/bottom Yukawa.
- SUSY-QCD small [16].

The SM

- ttH: known up to NLO-QCD [Beenakker et al '01, ...] [17, 18, 19](O(20%)), SCET [Kulesza et al '16] [20], resummation, EW corrections.
- ttH: available @ NLO+PS in POWHEG-BOX, MG5_aMC@NLO, SHERPA.
- bbH-4FS: up to NLO-QCD.
- bbH-5FS: up to NNLO-QCD (bbh@nnlo) [Harlander et al '03] [21].
- bbH, scheme matching: Santander, FONLL [Forte et al. '16], SCET [Bonvini et al '16].

dashed – ratio over LO; solid – ratio over NLO; crosses – LO+PS [Frederix et al 11]

The MSSM

- ttH suppressed for $\tan \beta > 1$.
- 4FS-ttA:NLO-QCD corrections for ttA know [19].
- 5FS-bbh: replace the bottom Yukawa with the resummed one.
- 4FS-(bb/tt)(A/H): Full NLO SUSY-QCD corrections recently computed [Dittmaier et al '14] [22, 23]
- Can be re-adsorbed with good approximations in the resummed bottom Yukawa coupling [Dittamaier et al '14].
- 5FS-code: SusHi (NNLO-QCD).

[YR4]

[Dittmaier et al '14]

The MSSM

- ttH suppressed for tan $\beta > 1$.
- 4FS-ttA:NLO-QCD corrections for ttA know [19].
- 5FS-bbh: replace the bottom Yukawa with the resummed one.
- 4FS-(bb/tt)(A/H): Full NLO SUSY-QCD corrections recently computed [Dittmaier et al '14] [22, 23]
- Can be re-adsorbed with good approximations in the resummed bottom Yukawa coupling [Dittamaier et al '14].
- 5FS-code: SusHi (NNLO-QCD).

[Dittmaier et al '14]

The MSSM

- ttH suppressed for tan $\beta > 1$.
- 4FS-ttA:NLO-QCD corrections for ttA know [19].
- 5FS-bbh: replace the bottom Yukawa with the resummed one.
- 4FS-(bb/tt)(A/H): Full NLO SUSY-QCD corrections recently computed [Dittmaier et al '14] [22, 23]
- Can be re-adsorbed with good approximations in the resummed bottom Yukawa coupling [Dittamaier et al '14].
- 5FS-code: SusHi (NNLO-QCD).

Scale uncertainty for bottom annihilation

- We take the set $C_{\mu} \equiv \{(\mu_R, \mu_F)\}$ of combinations of renormalization and factorization scales, where $\mu_R = \{m_{\phi}/2, m_{\phi}, 2m_{\phi}\}$ and $\mu_F = \{m_{\phi}/8, m_{\phi}/4, m_{\phi}/2\}$, with the constraint $2 \leq \mu_r/\mu_f \leq 8$
- Approximately independent of $\tan \beta$
- *O*(20%) for h, from 20% to a few % for H and A

Conclusions

- Precision physics can offer an insight on BSM extensions by looking at the deviation from SM predictions.
- For a meaningful precision physics program at the LHC, theoretical uncertainties should match the experimental precision of the results.
- The computation of radiative corrections for the SM Higgs boson is an ongoing effort.
- The MSSM, due to the lack of SUSY hints from the LHC and the higher complexity of the calculations, was less the focus of theorist attention in the past few years.

Backup slides

Double Higgs production

- Dominated by gluon fusion.
- Other channels (VBF, double Higgs strahlung, double quark-associated production) subdominant.
- Gluon fusion known up to NLO-QCD in SM via a numerical computation [Borowska et al ' 17].
- Known up to NNLO-QCD in the HQEFT [de Florian et al '13, ...] [24].
- NNLL soft and collinear resummation available [Shao et al '13, ..] [25].

Double Higgs production

The MSSM

- Final states: *hh*, *hH*, *hA*, *HH*, *HA*, *AA*
- hA, HA dominated by DY like process
- The new SM results important, because bottom quark may dominate in the MSSM.
- Recent progress: gluon fusion SUSY corrections known at NLO-QCD in the limit of vanishing external momenta [Degrassi et al '16].
- Code: HPAIR

Higgs decays

For the light SM-like Higgs, BSM physics can enter as

- Modified couplings.
- New intermediate state particles.
- New final states.

In an extended Higgs sector, we need to consider the decays of the new resonances

- Decay of CP-even neutral resonances.
- Decay of CP-odd neutral resonances.
- Decay of charged scalar resonances.

[YR3]

Higgs decays to gluons

The SM

 Loop induced decay, known at NLO-QCD in the SM, N³LO in the HQEFT [J.R. Ellis et al '76, ...][26, 4, 27, 28, 29, 30].

The MSSM

- HQEFT not applicable, couplings to b-quark strongly enhanced in the large $\tan\beta$ regime
- Squarks loop known up to NLO with full mass dependence [Bonciani et al '07, Mühlleitner et al '08] [6].
- Full QCD corrections computed either through expansions or numerically [Harlander et al '03, Degrassi et al '08, ...] [8].
- Sizable effect but can be decently described by the Δ_b approximation

[Spira et al '16]

Higgs decays to photons

The SM

- Full two-loop (NLO-QCD) corrections to quarks loop available[Spira et al '95] [4, 31, 5]
- In the HQEFT, QCD corrections known up to N³LO [26, 32, 4, 33].
- Perturbative behavior improved if expressed in terms of the running top mass @ $Q = M_H/2$
- Resummation of log(m_b/m_h) [34]

The MSSM

- NLO-QCD corrections for squark loops known [4, 6, 31, 5, 35].
- Pseudoscalar amplitudes show a Couloumb singularity at the tt
 threshold (regularized by the top and squark widths)
- Important phenomenological aspects, interplay of stops (and stau) to enhance/suppress $pp \to H \to \gamma \gamma.$

References i

- S. Catani, D. de Florian and M. Grazzini, JHEP 0105 (2001) 025; R. V. Harlander and W. B. Kilgore, Phys. Rev. D 64 (2001) 013015 and Phys. Rev. Lett. 88 (2002) 201801; C. Anastasiou and K. Melnikov, Nucl. Phys. B 646 (2002) 220; V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 665 (2003) 325; S. Marzani, R. D. Ball, V. Del Duca, S. Forte and A. Vicini, Nucl. Phys. B 800 (2008) 127; T. Gehrmann, M. Jaquier, E. W. N. Glover and A. Koukoutsakis, JHEP 1202 (2012) 056; C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, JHEP 1307 (2013) 003; C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, JHEP 1312 (2013) 088; W. B. Kilgore, Phys. Rev. D 89 (2014) 7, 073008; Y. Li, A. von Manteuffel, R. M. Schabinger and H. X. Zhu, Phys. Rev. D 90 (2014) 5, 053006; C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog and B. Mistlberger, JHEP 1503 (2015) 091; C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Phys. Rev. Lett. 114 (2015) 21, 212001; C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos and B. Mistlberger, JHEP 1605 (2016) 058.
- R. V. Harlander and K. J. Ozeren, Phys. Lett. B 679 (2009) 467 and JHEP 0911 (2009) 088; A. Pak,
 M. Rogal and M. Steinhauser, Phys. Lett. B 679 (2009) 473 and JHEP 1002 (2010) 025.
- D. de Florian, J. Mazzitelli, S. Moch and A. Vogt, JHEP 1410 (2014) 176; M. Bonvini and L. Rottoli, Phys. Rev. D 91 (2015) 5, 051301. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Nucl. Phys. B 888 (2014) 75.
- [4] M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Nucl. Phys. B 453 (1995) 17.

References ii

- [5] R. Harlander and P. Kant, JHEP 0512 (2005) 015; C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, JHEP 0701 (2007) 082; U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, JHEP 0701 (2007) 021.
- [6] M. Mühlleitner and M. Spira, Nucl. Phys. B 790 (2008) 1; R. Bonciani, G. Degrassi and A. Vicini, JHEP 0711 (2007) 095.
- [7] M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Phys. Lett. B 318 (1993) 347.
- [8] R. V. Harlander and M. Steinhauser, Phys. Lett. B 574 (2003) 258 and JHEP 0409 (2004) 066; G. Degrassi and P. Slavich, Nucl. Phys. B 805 (2008) 267; G. Degrassi, S. Di Vita and P. Slavich, Eur. Phys. J. C 72 (2012) 2032; R. V. Harlander and F. Hofmann, JHEP 0603 (2006) 050; R. V. Harlander, F. Hofmann and H. Martler, JHEP 1102 (2011) 055; G. Degrassi, S. Di Vita and P. Slavich, JHEP 1108 (2011) 128;
- [9] L. J. Hall, R. Rattazzi and U. Sarid, Phys. Rev. D 50, 7048 (1994); R. Hempfling, Phys. Rev. D 49, 6168 (1994); M. Carena, M. Olechowski, S. Pokorski and C. E. M. Wagner, Nucl. Phys. B 426 (1994) 269; D. M. Pierce, J. A. Bagger, K. T. Matchev and R.-J. Zhang, Nucl. Phys. B 491, 3 (1997); J. Guasch, W. Hollik and S. Peñaranda, Phys. Lett. B 515 (2001) 367; G. D'Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Nucl. Phys. B 645, 155 (2002); A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawianowska, Nucl. Phys. B 659, 3 (2003); V. Barger, H. E. Logan and G. Shaughnessy, Phys. Rev. D 79, 115018 (2009); N. D. Christensen, T. Han and S. Su, Phys. Rev. D 85, 115018 (2012).

References iii

- [10] P. Bolzoni, F. Maltoni, S. O. Moch and M. Zaro, Phys. Rev. Lett. **105** (2010) 011801 and Phys. Rev. D **85** (2012) 035002; M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam and G. Zanderighi, Phys. Rev. Lett. **115** (2015) no.8, 082002.
- [11] M. Ciccolini, A. Denner and S. Dittmaier, Phys. Rev. Lett. 99 (2007) 161803 and Phys. Rev. D 77 (2008) 013002.
- [12] R. V. Harlander, J. Vollinga and M. M. Weber, Phys. Rev. D 77, 053010 (2008); J. R. Andersen, T. Binoth, G. Heinrich and J. M. Smillie, JHEP 0802 (2008) 057; A. Bredenstein, K. Hagiwara and B. Jäger, Phys. Rev. D 77 (2008) 073004.
- [13] T. Han and S. Willenbrock, Phys. Lett. B 273 (1991) 167.
- [14] O. Brein, A. Djouadi and R. Harlander, Phys. Lett. B 579 (2004) 149.
- [15] L. Altenkamp, S. Dittmaier, R. V. Harlander, H. Rzehak and T. J. E. Zirke, JHEP 1302 (2013) 078; A. Hasselhuhn, T. Luthe and M. Steinhauser, arXiv:1611.05881 [hep-ph].
- [16] A. Djouadi and M. Spira, Phys. Rev. D 62 (2000) 014004.
- [17] W. Beenakker et al., Phys. Rev. Lett. 87 (2001) 201805.

References iv

- [18] W. Beenakker et al., Nucl. Phys. B653 (2003) 151–203; L. Reina and S. Dawson, Phys. Rev. Lett. 87 (2001) 201804; S. Dawson, L. H. Orr, L. Reina, and D. Wackeroth, Phys. Rev. D67 (2003) 071503.
- [19] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Phys. Lett. B 701 (2011) 427.
- [20] A. Kulesza, L. Motyka, T. Stebel and V. Theeuwes, JHEP 1603 (2016) 065.
- [21] R. V. Harlander and W. B. Kilgore, Phys. Rev. D 68 (2003) 013001.
- [22] S. Dittmaier, P. Häfliger, M. Krämer, M. Spira and M. Walser, Phys. Rev. D 90 (2014) no.3, 035010.
- [23] P. Wu, W. G. Ma, H. S. Hou, R. Y. Zhang, L. Han and Y. Jiang, Phys. Lett. B 618 (2005) 209.
- [24] D. de Florian and J. Mazzitelli, Phys. Lett. B 724 (2013) 306 and Phys. Rev. Lett. 111 (2013) 201801;
 J. Grigo, K. Melnikov and M. Steinhauser, Nucl. Phys. B 888 (2014) 17.
- [25] D. Y. Shao, C. S. Li, H. T. Li and J. Wang, JHEP 1307 (2013) 169; D. de Florian and J. Mazzitelli, JHEP 1509 (2015) 053.
- [26] J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 106 (1976) 292;

References v

- [27] T. Inami, T. Kubota and Y. Okada, Z. Phys. C 18 (1983) 69.
- [28] A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B 264 (1991) 440.
- [29] K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Phys. Rev. Lett. 79 (1997) 353.
- [30] P. A. Baikov and K. G. Chetyrkin, Phys. Rev. Lett. 97 (2006) 061803.
- H.-Q. Zheng and D.-D. Wu, Phys. Rev. D 42 (1990) 3760; A. Djouadi, M. Spira, J. J. van der Bij and
 P. M. Zerwas, Phys. Lett. B 257 (1991) 187; S. Dawson and R. P. Kauffman, Phys. Rev. D 47 (1993) 1264;
 A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B 311 (1993) 255; K. Melnikov and O. I. Yakovlev,
 Phys. Lett. B 312 (1993) 179; M. Inoue, R. Najima, T. Oka and J. Saito, Mod. Phys. Lett. A 9 (1994) 1189;
 J. Fleischer, O. V. Tarasov and V. O. Tarasov, Phys. Lett. B 584 (2004) 294.
- [32] B. A. Kniehl and M. Spira, Z. Phys. C 69 (1995) 77.
- [33] M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368].
- [34] M. I. Kotsky and O. I. Yakovlev, Phys. Lett. B 418 (1998) 335; R. Akhoury, H. Wang and O. I. Yakovlev, Phys. Rev. D 64 (2001) 113008.

References vi

- [35] A. Djouadi, V. Driesen, W. Hollik and J. I. Illana, Eur. Phys. J. C 1 (1998) 149.
- [36] S. Heinemeyer, W. Hollik and G. Weiglein, Phys. Rev. D 58 (1998) 091701 doi:10.1103/PhysRevD.58.091701 [hep-ph/9803277].
- [37] G. Degrassi, P. Slavich and F. Zwirner, Nucl. Phys. B 611 (2001) 403 doi:10.1016/S0550-3213(01)00343-1 [hep-ph/0105096].
- [38] A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, Nucl. Phys. B 643 (2002) 79 doi:10.1016/S0550-3213(02)00748-4 [hep-ph/0206101].
- [39] S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, Eur. Phys. J. C 74 (2014) no.8, 2994 doi:10.1140/epjc/s10052-014-2994-0 [arXiv:1404.7074 [hep-ph]].
- [40] A. Dedes and P. Slavich, Nucl. Phys. B 657 (2003) 333 doi:10.1016/S0550-3213(03)00173-1 [hep-ph/0212132].
- [41] E. Bagnaschi, G. F. Giudice, P. Slavich and A. Strumia, JHEP 1409 (2014) 092 doi:10.1007/JHEP09(2014)092 [arXiv:1407.4081 [hep-ph]].

References vii

- [42] E. Bagnaschi, J. Pardo Vega and P. Slavich, Eur. Phys. J. C 77, no. 5, 334 (2017) doi:10.1140/epjc/s10052-017-4885-7 [arXiv:1703.08166 [hep-ph]].
- [43] S. P. Martin, Phys. Rev. D 66 (2002) 096001 doi:10.1103/PhysRevD.66.096001 [hep-ph/0206136].
- [44] S. P. Martin, Phys. Rev. D 67 (2003) 095012 doi:10.1103/PhysRevD.67.095012 [hep-ph/0211366].
- [45] R. V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Phys. Rev. Lett. 100 (2008) 191602 [Phys. Rev. Lett. 101 (2008) 039901] doi:10.1103/PhysRevLett.101.039901, 10.1103/PhysRevLett.100.191602 [arXiv:0803.0672 [hep-ph]].
- [46] P. Kant, R. V. Harlander, L. Mihaila and M. Steinhauser, JHEP 1008 (2010) 104 doi:10.1007/JHEP08(2010)104 [arXiv:1005.5709 [hep-ph]].
- [47] S. Heinemeyer, W. Hollik and G. Weiglein, Comput. Phys. Commun. 124 (2000) 76 doi:10.1016/S0010-4655(99)00364-1 [hep-ph/9812320].
- [48] P. Athron, J. h. Park, D. Stöckinger and A. Voigt, Comput. Phys. Commun. 190 (2015) 139 doi:10.1016/j.cpc.2014.12.020 [arXiv:1406.2319 [hep-ph]].
- [49] W. Porod, Comput. Phys. Commun. 153 (2003) 275 doi:10.1016/S0010-4655(03)00222-4 [hep-ph/0301101].

- [50] W. Porod and F. Staub, Comput. Phys. Commun. 183 (2012) 2458 doi:10.1016/j.cpc.2012.05.021 [arXiv:1104.1573 [hep-ph]].
- [51] A. Djouadi, J. L. Kneur and G. Moultaka, Comput. Phys. Commun. 176 (2007) 426 doi:10.1016/j.cpc.2006.11.009 [hep-ph/0211331].
- [52] B. C. Allanach, Comput. Phys. Commun. 143 (2002) 305 doi:10.1016/S0010-4655(01)00460-X [hep-ph/0104145].
- [53] B. C. Allanach, A. Bednyakov and R. Ruiz de Austri, Comput. Phys. Commun. 189 (2015) 192 doi:10.1016/j.cpc.2014.12.006 [arXiv:1407.6130 [hep-ph]].