

1

Latest ATLAS Results in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ Differential Cross Sections and Couplings

Kurt Brendlinger LHC Physics Discussion: Higgs

May 7, 2018

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

Latest ATLAS 13 TeV Results

• Measurements of Higgs boson properties in the $\gamma\gamma$ decay channel (36 fb⁻¹)

- arXiv:1802.04146 (Feb 12, 2018 Submitted to PRD)
- Adds to previous conference note (ATLAS-CONF-2017-045 July 2017)

Combination of Fiducial and Differential Cross Sections (γγ and 4ℓ) (36.1 fb–1)

- Conference note: http://cdsweb.cern.ch/record/2308390 (Mar 12, 2018)
- Paper in final stages of preparation
- Last differential combination of $\gamma\gamma$ and ZZ results was in December 2015 (3.2 fb⁻¹)

• Brief outline:

- Motivate differential cross sections and couplings (STXS)
- Introduce $H{\rightarrow}\gamma\gamma$ and $H{\rightarrow}ZZ^{*}{\rightarrow}4\boldsymbol{\ell}$ analyses
- Describe differential cross section measurements and combination
- Focus on $H{\rightarrow}\gamma\gamma$ Couplings Results

Higgs Physics, $H{\rightarrow}\gamma\gamma$ and $H{\rightarrow}ZZ$

• $H \rightarrow ZZ \rightarrow 4\ell$ channel

Precision Measurements with the Higgs

- Total Cross Section
 - Extrapolate outside of detector's reach
 - Acceptance factor can be quite model dependent

• Fiducial Cross Sections - a measurement that lasts

- A cross section in a phase space matching analysis cuts
- Correction factor for detector effects typically small
- <u>Rivet routine</u> to allow theorists to run their favorite generator and apply fiducial selection
- Fiducial Differential Cross Sections
 - Gets the shape of interesting variables
 - Deal with bin migrations by unfolding data distributions
 - E.g. Correction factors for each bin
- Measurements of Production modes (couplings)
 - Use lepton multiplicity, jet topologies, etc. to probe production modes
 - Details covered later

LHC Physics Discussion: ATLAS Higgs Results – May 7, 2018

4

$$\sigma_{\text{total}} = \frac{N_{\text{data}} - N_{\text{bkg}}}{\mathcal{L}_{\text{int}} \cdot C \cdot A \cdot BR}$$

$$\sigma_{\rm fid} = \frac{N_{\rm data} - N_{\rm bkg}}{\mathcal{L}_{\rm int} \cdot C}$$

e.g.
$$\sigma_i^{\text{fid}} = \frac{N_{\text{data},i} - N_{\text{bkg},i}}{\mathcal{L}_{\text{int}} \cdot C_i}$$

Differential Cross Sections

- Motivating the Higgs variables
- Introduction to the $H{\rightarrow}~\gamma\gamma$ and $H{\rightarrow}ZZ^{*}{\rightarrow}4\boldsymbol{\ell}$ analyses
- Differential Cross section results
- Combination

Sarah Heim

$H{\rightarrow}\gamma\gamma$ Channel – General Introduction

- Trigger events with asymmetric diphoton trigger (35 GeV, 25 GeV thresholds)
- Select 2 tight, isolated photons
- Split up events:
 - Categorize events according to topology (number of leptons, jets, event kinematics with BDTs...)
 - Differential bins of variables with interesting physics
- In each bin/category, model the background m_{γγ} distribution using a falling function or a polynomial
 - $\bullet \ \ldots$ with as few degrees of freedom (DOF) as is required
- Perform your S+B fit of $m_{\gamma\gamma}$ distribution on data
 - Signal is modeled using double-sided Crystal Ball

7

$H{\rightarrow}~ZZ{\rightarrow}~4\boldsymbol{\ell}-General~Introduction$

- Fast Facts:
 - electrons, muons, not taus
 - Fully reconstruct the final state
 - signal/background ~2 (115-130 GeV window)
- Event selection:
 - 4 leptons, very loose identification, isolation
 - Form 2 opposite sign, same flavor pairs
 - '' Z_{12} '' consistent with on-shell Z; '' Z_{34} '' with off-shell Z
 - Constrain Z_{12} kinematically to M_{Z}
- Background estimates:
 - Irreducible from SM Z(*)Z(*) \rightarrow 4 ℓ , ttV, VVV
 - modeled using simulation
 - <u>Reducible from Z+jets and ttbar (and WZ), modeled</u> <u>using data-driven methods</u>

Obtaining a differential distribution: $H \rightarrow ZZ^* \rightarrow 4\ell$

K. Brendlinger

$H \rightarrow ZZ^* \rightarrow 4\ell$ Differential Results

K. Brendlinger

$H \rightarrow \gamma \gamma$ Differential Results

Combination of ZZ* and $\gamma\gamma$ Channels

- Channels are individually corrected to full phase space using an additional correction factor
- Unfolding combination performed by maximizing the profile likelihood ratio:

$$\Lambda(\boldsymbol{\sigma}) = \frac{\mathcal{L}(\boldsymbol{\sigma}, \hat{\boldsymbol{\theta}}(\boldsymbol{\sigma}))}{\mathcal{L}(\hat{\boldsymbol{\sigma}}, \hat{\boldsymbol{\theta}})}$$

• Calculate a *p*-value between data and theory based on the profile likelihood ratio test statistic

Results - Differential Cross Section Combination

- Results compatible with Standard Model
- HRes more discrepant has a lower predicted cross section (NNLO+NNLL accuracy)

p-values [%]	$p_{\mathrm{T}}^{\mathrm{H}}$	$ y^{\mathrm{H}} $
NNLOPS ($@N^{3}LO$)	29	92
HRES	5	
RADISH + NNLOJET	29	
SCETLIB	<u> </u>	91

Results - Differential Cross Section Combination

p-values [%]	$N_{\rm jets}$	$p_{\mathrm{T}}^{\mathrm{j1}}$
NNLOPS ($@N^{3}LO$)	45	5
SCETLIB	—	21
Madgraph5_aMC@NLO (@N ^{3}LO)	57	—

Additional $H \rightarrow \gamma \gamma$ Results

- Using differential cross sections to constrain effective Lagrangians
- Couplings using Simplified Template Cross Sections

Using Differential XS Measurements to constrain EFT

- Unfolded differential measurements can be used to constrain effective Lagrangian operators
 - Provide differential measurements of several variables,
 - plus covariance matrices of statistical, experimental and theoretical uncertainties to theorists
 - With these two ingredients, can constrain parameter space of effective Lagrangians

Couplings using Simplified Template Cross Sections

Particle-level (truth) categories

Reco categories to be measured individually

- (1) Split your Higgs particle phase space into "truth categories" (based on production modes, kinematics)
- (2) Construct reco categories to ~match truth categories
- (3) Measure cross section in each category

- \bullet More model-independent than measuring signal strengths μ
- Maximize sensitivity of measurements, while
- reducing theory dependencies folded into measurement

(1)

Simplified template cross sections: $H \rightarrow ZZ^* \rightarrow 4\ell$

K. Brendlinger

STXS Reco-Truth Matrix

but not theory yield uncertainties

K. Brendlinger

Reco Category Purity (focusing on prod. mode)

ttH (ideally all purple)

VH leptonic (ideally all light/dark blue)

VBF + VH hadronic (ideally all dark green)

$$ggH + gg \rightarrow Z(\rightarrow qq)H$$

*** Measured cross sections will be correlated, so we must provide a correlation matrix alongside our final results for proper interpretation

$H{\rightarrow}~\gamma\gamma$ STXS Results

- Note that some truth categories have been "merged away" due to lack of sensitivity.
- A theorist could take the above and plug in his favorite BSM model to see how it compares to data
- K. Brendlinger

 $H{\rightarrow}~\gamma\gamma$ Couplings Measurements using 36 fb–1 of 13 TeV data

Measured σ for each production mode

Process	Result	Uncertainty [fb]			SM prediction	
$(y_H < 2.5)$	[fb]	Total	Stat.	Exp.	Theo.	[fb]
ggH	82	$^{+19}_{-18}$	(± 16)	$^{+7}_{-6}$	$^{+5}_{-4}$	102^{+5}_{-7}
VBF	16	$^{+5}_{-4}$	$(\pm 4$	± 2	$^{+3}_{-2}$	8.0 ± 0.2
VH	3	± 4	$\begin{pmatrix} +4\\ -3 \end{pmatrix}$	± 1	$^{+1}_{-0}$	4.5 ± 0.2
Top	0.7	$^{+0.9}_{-0.7}$	$\binom{+0.8}{-0.7}$	$^{+0.2}_{-0.1}$	$^{+0.2}_{-0.0}$	1.3 ± 0.1

K. Brendlinger

 $H{\rightarrow}~\gamma\gamma$ Couplings Measurements using 36 fb–1 of 13 TeV data

Conclusions

- Fiducial and differential cross section measurements in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ channels
- Combination of differential measurements
- Constraints on Effective Lagrangians using differential results
- $H \rightarrow \gamma \gamma$ Couplings using Simplified Template Cross Sections

0.8 0.6 0.4

Ω

0.3

0.6

0.9

1.2

1.6

2.5

 $|y^{H}|$

Outlook – Run 2 Physics at 150 fb⁻¹

- LHC has delivered 93 fb-1 of data so far in Run 2
- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ results using the first 36 fb⁻¹ of this data
 - Adding 2017 data will double the dataset for these measurements
- 2018 data-taking period began again on April 28
 - Already reached a peak luminosity of 20×10^{33} cm⁻²s⁻¹
 - Looking forward to Physics with 150 fb⁻¹!

Latest ATLAS 13 TeV Results

- Measurements of Higgs boson properties in the $\gamma\gamma$ decay channel (36 fb⁻¹)
 - <u>arXiv:1802.04146</u> (Feb 12, 2018 Submitted to PRD)
 - Adds to previous conference note (ATLAS-CONF-2017-045 July 2017)
- <u>Combination of Fiducial and Differential Cross Sections (γγ and 4ℓ)</u> (36.1 fb–1)
 - Conference note: <u>http://cdsweb.cern.ch/record/2308390</u> (Mar 12, 2018)
 - Paper in final stages of preparation
 - Last differential combination of $\gamma\gamma$ and ZZ results was in December 2015 (3.2 fb^{-1})
- Other recent results:
 - Couplings combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ (ATLAS-CONF-2017-047) July 2017
 - Mass combination (<u>ATLAS-CONF-2017-046</u>) July 2017
 - H→ZZ*→4ℓ Differential (<u>JHEP 10 (2017) 132</u>) Aug 2017
 - <u>H→ZZ*→4</u>ℓ Couplings (JHEP 03 (2018) 095) Dec 2017

BACKUP

K. Brendlinger

LHC Physics Discussion: ATLAS Higgs Results – May 7, 2018

27

$H \rightarrow \gamma \gamma$ Differential Variables

K. Brendlinger

LHC Physics Discussion: ATLAS Higgs Results - May 7, 2018

29

$H \rightarrow \gamma \gamma$ Differential Variables

 $d\sigma_{fid} / d\rho_T^{\gamma\gamma}$

Ratio to default MC + XH

$H{\rightarrow}\gamma\gamma~p_T$ and N_{jet} Systematic uncertainties

ATLAS-CONF-2018-002

• Monte Carlo used:

Process	Generator	Accuracy in QCD	PDF set
ggF	Powheg-Box v2 (NNLOPS) [19–22]	NNLO in $ y^{H} $ [23],	PDF4LHC [24]
		$p_{\rm T}^{\rm H}$ consistent with HqT	
		(NNLO+NNLL) [25, 26]	
VBF	Роwнед-Box v2 [19–21, 27]	NLO	PDF4LHC
VH	Роwнед-Box v2 (MiNLO) [19–21, 28]	NLO	PDF4LHC
tTH	Madgraph5_aMC@NLO (v.2.2.3) [29]	NLO	CT10nlo [30]
$b\bar{b}H$	Madgraph5_aMC@NLO (v.2.3.3) [29, 31]	NLO	NNPDF23 [32]

• Cross section predictions used to normalize MC:

Process	Accuracy	Fraction [%]
ggF	N ³ LO, NLO EW corrections [36–49]	87.4
VBF	NLO, NLO EW corrections [50–52]	6.8
	with approximate NNLO QCD corrections [53]	
VH	NNLO [54, 55], NLO EW corrections [56]	4.1
tŦH	NLO [57–60]	0.9
$b\bar{b}H$	five-flavour: NNLO, four-flavour: NLO [61]	0.9

Reconstruction-level Categorization

DESY	ATLAS
	EXPERIMENT

	Category	Selection	Filled first
	tH lep 0fwd	$N_{\text{lep}} = 1, N_{\text{jets}}^{\text{cen}} \le 3, N_{\text{b-tag}} \ge 1, N_{\text{jets}}^{\text{fwd}} = 0 \ (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$	
	tH lep 1fwd	$N_{\text{lep}} = 1, N_{\text{jets}}^{\text{cen}} \le 4, N_{\text{b-tag}} \ge 1, N_{\text{jets}}^{\text{fwd}} \ge 1 \ (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$	(smallest σ)
	ttH lep	$N_{\text{lep}} \ge 1, N_{\text{iets}}^{\text{cen}} \ge 2, N_{\text{b-tag}} \ge 1, Z_{\ell\ell} \text{ veto } (p_{\text{T}}^{\text{jet}} > 25 \text{ GeV})$	
	ttH had BDT1	$N_{\rm lep} = 0, N_{\rm jets} \ge 3, N_{\rm b-tag} \ge 1, \text{BDT}_{\rm ttH} > 0.92$	
tH, ttH	ttH had BDT2	$N_{\text{lep}} = 0, N_{\text{jets}} \ge 3, N_{\text{b-tag}} \ge 1, 0.83 < \text{BDT}_{\text{ttH}} < 0.92$	
	ttH had BDT3	$N_{\rm lep} = 0, N_{\rm jets} \ge 3, N_{\rm b-tag} \ge 1, 0.79 < {\rm BDT}_{\rm ttH} < 0.83$	
	ttH had BDT4	$N_{\rm lep} = 0, N_{\rm jets} \ge 3, N_{\rm b-tag} \ge 1, 0.52 < {\rm BDT}_{\rm ttH} < 0.79$	
	tH had 4j1b	$N_{\text{lep}} = 0, N_{\text{jets}}^{\text{cen}} = 4, N_{\text{b-tag}} = 1 \ (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$	
	tH had 4j2b	$N_{\text{lep}} = 0, N_{\text{jets}}^{\text{cen}} = 4, N_{\text{b-tag}} \ge 2 \ (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$	
	VH dilep	$N_{\text{lep}} \ge 2, 70 \text{GeV} \le m_{\ell\ell} \le 110 \text{GeV}$	
	VH lep HIGH	$N_{\rm lep} = 1, m_{e\gamma} - 89 {\rm GeV} > 5 {\rm GeV}, p_{\rm T}^{l+E_{\rm T}^{\rm miss}} > 150 {\rm GeV}$	
VH Lep	VH lep LOW	$N_{\text{lep}} = 1, m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, \ p_{\text{T}}^{l+E_{\text{T}}^{\text{miss}}} < 150 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{ significance} > 1$	
	VH MET HIGH	$150 \text{GeV} < E_{\text{T}}^{\text{miss}} < 250 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{ significance} > 9 \text{ or } E_{\text{T}}^{\text{miss}} > 250 \text{GeV}$	
	VH MET LOW	$80 \text{GeV} < E_{\text{T}}^{\text{miss}} < 150 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{ significance} > 8$	
	jet BSM	$p_{\rm T,j1} > 200 {\rm GeV}$	
hcH HV	VH had tight	$60 \text{ GeV} < m_{jj} < 120 \text{ GeV}, \text{BDT}_{VH} > 0.78$	
VIIIIau	VH had loose	$60 \text{ GeV} < m_{jj} < 120 \text{ GeV}, 0.35 < \text{BDT}_{VH} < 0.78 $	
	VBF tight, high p_T^{Hjj}	$\frac{\Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_T^{TJ} > 25 \text{ GeV}, \text{BDT}_{\text{VBF}} > 0.47}{0.5(1 + \eta_{j2}) < 5, p_T^{TJ} > 25 \text{ GeV}, \text{BDT}_{\text{VBF}} > 0.47}$	
VBF	VBF loose, high p_T	$\frac{\Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_T^{33} > 25 \text{ GeV}, -0.32 < \text{BD1}_{\text{VBF}} < 0.47 \textbf{)} = -1$	
	VBF tight, low p_T^{Hjj}	$\frac{\Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_T^{33} < 25 \text{ GeV}, \text{BD1}_{\text{VBF}} > 0.87}{ \Delta n_{\text{VBF}} > 2, n_T - 0.5(n_{\text{V}} + n_{2}) < 5, p_T^{Hjj} < 25 \text{ GeV}, 0.26 < \text{BDT}_{\text{VBF}} < 0.87} \text{BDT}$	
	r p_T	$ \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} > 0.5(\eta_{j1} + \eta_{j2}) < 5, p_T < 25 \text{ GeV}, 0.26 < \text{DDTVBF} < 0.67$	
	ggH 2J D5W	$\geq 2 \text{ jets}, p_{\text{T}} \geq 200 \text{ GeV}$ $\geq 2 \text{ jets}, n^{\gamma\gamma} \in [120, 200] \text{ GeV}$	
	σσΗ 21 MED	$\geq 2 \text{ jets}, p_{\mathrm{T}} \in [120, 200] \text{ GeV}$ > 2 jets $p^{\gamma\gamma} \in [60, 120] \text{ GeV}$	
	ggH 2J LOW	≥ 2 jets, $p_{\rm T} \approx [00, 120]$ GeV	
	ggH 1J BSM	$= 1 \text{ jet, } p_T^{\gamma\gamma} \ge 200 \text{ GeV}$	
ggH	ggH 1J HIGH	$= 1 \text{ jet}, p_{T}^{\gamma\gamma} \in [120, 200] \text{ GeV}$	
	ggH 1J MED	$= 1 \text{ jet}, p_{\mathrm{T}}^{\gamma\gamma} \in [60, 120] \text{ GeV}$	
	ggH 1J LOW	$= 1 \text{ jet}, p_{\rm T}^{\hat{\gamma}\gamma} \in [0, 60] \text{ GeV}$	Filled last
	ggH 0J FWD	= 0 jets, one photon with $ \eta > 0.95$	
	ggH 0J CEN	$ =0$ jets, two photons with $ \eta \le 0.95$	$(largest \sigma)$

K. Brendlinger

LHC Physics Discussion: ATLAS Higgs Results – May 7, 2018

The number of signal in a given reconstruction c ategory s_c is the sum of the contributions from each truth bin:

- L is luminosity
- $\sigma_t^{\gamma\gamma}$ is the cross section \times BR of a given truth category $\mathbf{t}_{N_{data}} N_{bkg}$ These are the parameters we want to find $\sigma_{fid} = \frac{N_{data} N_{bkg}}{\mathcal{L}_{int} \cdot C}$
- Acceptance factor for a given truth bin t to fall into reco category c: $\epsilon_{tc} = n_{tc}/n_t$, estimated using MC
 - (introduces small <u>migration</u> theory uncertainty)
- Similarities with differential cross sections: $\sigma_i^{\text{fid}} = \frac{N_{\text{data},i} N_{\text{bkg},i}}{C + C}$

Want our reconstruction categories to be as pure as possible in a single truth category
$$\rightarrow$$
 analogy to bin-to-bin migrations in differential XS

Using BDTs in the reconstruction categories

- 4 BDTs are used to enhance certain production processes (ttH, VH Hadronic, VBF (x2)
 - Can significantly improve significance
 - We try to avoid introducing large uncertainties by avoiding variables that are poorly described by theory

LHC Physics Discussion: ATLAS Higgs Results - May 7, 2018