New approach for precision predictions using TMDs at hadron colliders

Hannes Jung (DESY)

in collaboration with

A. Bermudez-Martinez, P. Connor , F. Hautmann, A. Lelek, V. Radescu, R. Zlebcik

- Why TMDs are needed
 - TMDs for hadron-hadron collisions
- New developments
 - parton branching algorithm to solve evolution equations
 - benchmark tests
 - advantages for integrated PDFs
 - determination of TMD densities at NLO with xFitter
- Application to DY production
- Application to TMD parton showers

TMDs – what is it ?

- TMDs (Transverse Momentum Dependent parton distribution)
 - at very small transverse momenta
 - typically for small q_t in DY production, or semi-inclusive DIS
 - at very small x un-integrated PDFs
 - essentially only gluon densities (CCFM, BFKL etc)
 - new approach to cover all transverse momenta from small k_t to large k_t as well as to cover all x and all μ^2
 - parton branching method (described here)

Why TMDs ?

- ${}^{\bullet}$ NLO-dijet (Powheg) w/o PS cannot describe small $\Delta\,\phi$
- \bullet NLO-dijet (Powheg) with TMDs describes spectrum at small and large $\Delta\,\phi$
- Region of higher order emissions described by TMDs

TMDs – how to determine ?

- Transverse momentum effects are naturally coming from intrinsic k_t and parton showers
- TMD effects can be significant in all distributions, even for inclusive (or semiinclusive) distributions at large pt
- New: parton branching method
 - perform evolution using a parton branching method
 - determine integrated PDF from parton branching solution of evolution eq.
 - check consistency with standard evolution on integrated PDFs
 - at LO, NLO and NNLO
 - determine TMD:
 - since each branching is generated explicitly, energy-momentum conservation is fulfilled and transverse momentum distributions can be obtained

TMDs – how to determine ?

- P.Radesou and R. T. BOOK Collinger and The Transverse momentum effects are naturally coming and parton
- TMD effects can be significant in all distribution
- New: parton branching method
- Photometry Company and the second of the sec US needed to the part of the p Foundation Proposed and the providence of the pr verse momentum distributions can be

H. Jung, New approach for precision predictions using TMDs at hadron colliders, LHC discussion, DESY, May 28, 2018

or ser

on of evolution eq.

DGLAP evolution – solution with parton branching method

• differential form:
$$\mu^2 \frac{\partial}{\partial \mu^2} f(x,\mu^2) = \int \frac{dz}{z} \frac{\alpha_s}{2\pi} P_+(z) f\left(\frac{x}{z},\mu^2\right)$$
$$\Delta_s(\mu^2) = \exp\left(-\int^{z_M} dz \int^{\mu^2}_{\mu_0^2} \frac{\alpha_s}{2\pi} \frac{d\mu'^2}{\mu'^2} P^{(R)}(z)\right)$$

• differential form using f/Δ_s with

$$\mu^2 \frac{\partial}{\partial \mu^2} \frac{f(x,\mu^2)}{\Delta_s(\mu^2)} = \int \frac{dz}{z} \frac{\alpha_s}{2\pi} \frac{P^{(R)}(z)}{\Delta_s(\mu^2)} f\left(\frac{x}{z},\mu^2\right)$$

integral form

$$f(x,\mu^2) = f(x,\mu_0^2)\Delta_s(\mu^2) + \int \frac{dz}{z} \int \frac{d\mu'^2}{\mu'^2} \cdot \frac{\Delta_s(\mu^2)}{\Delta_s(\mu'^2)} P^{(R)}(z) f\left(\frac{x}{z},\mu'^2\right)$$

no – branching probability from μ^{2_0} to μ^2

DGLAP re-sums leading logs...

$$f(x,\mu^2) = f(x,\mu_0^2)\Delta_s(\mu^2) + \int \frac{dz}{z} \int \frac{d\mu'^2}{\mu'^2} \cdot \frac{\Delta_s(\mu^2)}{\Delta_s(\mu'^2)} P^{(R)}(z) f\left(\frac{x}{z},\mu'^2\right)$$

solve integral equation via iteration:

Evolution equation and parton branching method

• use momentum weighted PDFs: xf(x,t)

$$xf_{a}(x,\mu^{2}) = \Delta_{a}(\mu^{2}) xf_{a}(x,\mu_{0}^{2}) + \sum_{b} \int_{\mu_{0}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu'^{2})} \int_{x}^{z_{M}} dz P_{ab}^{(R)}(\alpha_{s},z) \frac{x}{z} f_{b}\left(\frac{x}{z},\mu'^{2}\right)$$

- with $P_{ab}(R)(\alpha_s(t'),z)$ real emission probability (without virtual terms)
 - z_M introduced to separate real from virtual and non-emission probability
 - reproduces DGLAP up to $\mathcal{O}(1-z_M)$
- make use of momentum sum rule to treat virtual corrections
 - use Sudakov form factor to treat non-resolvable and virtual corrections

$$\Delta_a(z_M, \mu^2, \mu_0^2) = \exp\left(-\sum_b \int_{\mu_0^2}^{\mu^2} \frac{d\mu'^2}{\mu'^2} \int_0^{z_M} dz \ z \ P_{ba}^{(R)}(\alpha_s), z)\right)$$

Validation of method with QCDnum at NLO

• Very good agreement with NLO - QCDnum if z_M is large enough:

• approximation is of $\mathcal{O}(1-z_M)$

Transverse Momentum Dependence

- Parton Branching evolution generates every single branching:
 - kinematics can be calculated at every step
- Give physics interpretation of evolution scale:
 - in high energy limit: p_T -ordering:

$$\mu = q_T$$

• angular ordering:

 $\mu = q_T / (1 - z)$

Transverse Momentum: dependence on z_M

- p_T ordering ($\mu = q_T$) shows significant dependence on z_M : unstable result because of soft gluon contribution
- angular ordering ($\mu = q_T/(1-z)$) is independent of z_M : stable results since soft gluons are suppressed (angular ordering)

H. Jung, New approach for precision predictions using TMDs at hadron colliders, LHC discussion, DESY, May 28, 2018

Parton branching method in xFitter

Convolution of kernel with starting distribution

$$\begin{aligned} xf_a(x,\mu^2) &= x \int dx' \int dx'' \mathcal{A}_{0,b}(x') \tilde{\mathcal{A}}_a^b \left(x'',\mu^2\right) \delta(x'x''-x) \\ &= \int dx' \mathcal{A}_{0,b}(x') \cdot \frac{x}{x'} \; \tilde{\mathcal{A}}_a^b \left(\frac{x}{x'},\mu^2\right) \end{aligned}$$

- kernel defined on grid (for integrated and TMD distribution)
- validation of method:

H. Jung, New approach for precision predictions using TMDs at hadron colliders, LHC discussion, DESY, May 28, 2018

Advantages of parton branching method

• DGLAP equation:

$$\mu^2 \frac{\partial}{\partial \mu^2} f(x,\mu^2) = \int \frac{dz}{z} \, \frac{\alpha_s(\mu_r)}{2\pi} P_+(z) \, f\left(\frac{x}{z},\mu^2\right)$$

- Advantages of parton branching method for collinear PDFs:
 - access to all kinematic variables and combinations between them
 - full freedom of choosing:
 - renormalisation scale: $\alpha_s(\mu_r)$
 - evolution scale: μ_f
 - studies of different ordering conditions possible for the first time
 - angular ordering with $\alpha_s(q)$
 - but angular ordering suggests that renormalization scale is p_T and not angle
 - angular ordering with $\alpha_s(p_T) \rightarrow \alpha_s(q(1-z))$
 - repeat fits with changed renormalisation scale in pdf (but not yet in coefficient fct)

Fit with changed $\alpha_s(p_T)$: at small Q^2

- fit 1 with $\alpha_s(q)$
 - as good as HERAPDF2.0 $\chi^2/ndf = 1.2$
- fit 2 with $\alpha_s(q(1-z))$
 - $\chi^2/ndf = 1.21$
- very different gluon distribution obtained at small Q^2

TMD distributions

H. Jung, New approach for precision predictions using TMDs at hadron colliders, LHC discussion, DESY, May 28, 2018

Application to DY q_T - spectrum

- Use LO DY production
 - $q\bar{q} \rightarrow Z_0$
 - add k_t for each parton as function of x and μ according to TMD
 - keep final state mass fixed:
 - x_1 and x_2 (light-cone fraction) are different after adding k_t

Application to DY q_T - spectrum

- Use LO DY production
 - $q\bar{q} \to Z_0$
- TMD with angular ordering including $\alpha_s(q)$

ATLAS Collaboration Eur. Phys. J. C76 (2016), 291 [arXiv:1512.02192

TMD distributions

• Differences essentially in low k_T region

• introducing q_T instead of q, suppresses further soft gluons filling low k_T !

Application to DY q_T - spectrum

Use LO DY production

 $q\bar{q} \to Z_0$

- TMD with angular ordering including $\alpha_s(q)$
- TMD with angular ordering including $\alpha_s(p_T)$
 - in low p_T much better !

- Additional issues:
 - resolvable branching
 - freeze α_s
 - intrinsic k_T

ATLAS Collaboration Eur. Phys. J. C76 (2016), 291 [arXiv:1512.02192

- basic elements are:
 - Matrix Elements:
 - ➔ on shell/off shell
 - PDFs
 - → TMDs

- basic elements are:
 - Matrix Elements:
 - ➔ on shell/off shell
 - PDFs
 - ➔ TMDs
 - Parton Shower
 - \rightarrow following TMDs for initial state !

- basic elements are:
 - Matrix Elements:
 - ➔ on shell/off shell
 - PDFs
 - ➔ TMDs
 - Parton Shower
 - \rightarrow following TMDs for initial state !

- basic elements are:
 - Matrix Elements:
 - ➔ on shell/off shell
 - PDFs
 - ➔ TMDs
 - Parton Shower
 - ➔ following TMDs for initial state !
- Proton remnant and hadronization handled by standard hadronization program, e.g. PYTHIA

Application to high p_T dijets in pp

 Dijet production at in pp, Dijet azimuthal correlation ak4, $300 < p_T^{\text{leading}} < 400 \text{ GeV}$ a test for TMDs and PS : $rac{1}{\sigma}rac{d\sigma}{d\Delta\phi_{1,2}} \left[\mathrm{rad}^{-1}
ight]$ Data 1 bare POWHEG-2J bare POWHEG-2J + TME uu 10^{-2} j1 j1 $\Delta \phi$ j2 10^{-3} 10^{-4} 10⁻⁵ 2.8 1.8 2.6 1.6 2.2 2.4 2 3 $\Delta \phi_{1,2}$ [rad]

• TMDs with NLO dijets get closer to data !

Application to high p_T dijets in pp

• TMDs with NLO dijets + parton shower (following TMD) describes data!

Application to high p_T dijets in pp

 Dijet production at in pp, a test for TMDs and PS :

• TMDs with NLO dijets + parton shower (following TMD) describes data!

- different TMD sets are very similar
- TMD + NLO dijets + PS \rightarrow better than conventional treatment !

H. Jung, New approach for precision predictions using TMDs at hadron colliders, LHC discussion, DESY, May 28, 2018

Conclusion

- Parton Branching method to solve DGLAP equation at LO, NLO and NNLO
 - ➔ consistence for collinear (integrated) PDFs shown
 - ➔ advantages of Parton Branching method !
- method directly applicable to determine k_t distribution (as would be done in PS)
 - TMD distributions for all flavors determined at LO and NLO, without free parameters
 - ➔ TMD evolution implemented in xFitter fits to DIS processes at the moment
- Application for pp, ep processes, like DY, jets:
 - → DY q_T spectrum without new parameters
 - ➔ TMD initial parton shower:
 - ➔ backward evolution following exactly the TMD density
 - → dijet $\Delta \phi$ very well described with NLO dijets + TMD + TMD shower

Announcement of REF 2018

Workshop on Resummation, Evolution, Factorization 2018			
19-22 November 2018 Other Institutes		Search	Q
Europe/Warsaw timezone			
Overview Timetable Participant List Venue Travel Contact	REF 2018 is the 5th workshop in the series of workshops on Resummation, Evolution, Factorization. The workshop wishes to bring together experts of different communities specialized in: nuclear structure; transverse momentum dependend distributions; small-x physics; effective field theories. Previous meetings • 13-16 November 2017 Madrid (Spain) • 7-10 November 2016 Antwerp (Belgium) • 2-5 November 2015 DESY Hamburg (Germany) • 8-11 December 2014 Antwerp (Belgium)		
 krzysztof.kutak@ifj.edu.pl jolanta.mosurek@ifj.edu.pl 			
	Elke Aschenauer Daniel Boer Igor Cherednikov Markus Diehl Didar Dobur David Dudal Miguel García Echevarría		

Francesco Hautmann

Pierre Van Mechelen

Fabio Maltoni

Gunar Schnell

H. Jung, New approach for precision predictions using TMDs at hadron colliders, LHC discussion, DESY, May 28, 2018

Laurent Favart

Hannes Jung Piet Mulders

Andrea Signori

Appendix

Where to find TMDs? TMDlib and TMDplotter

- TMDlib proposed in 2014 as part of REF workshop and developed since
- combine and collect different ansaetze and approaches:

http://tmd.hepforge.org/ and http://tmdplotter.desy.de

 TMDlib: a library of parametrization of different TMDs and uPDFs (similar to LHApdf)

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions, *F. Hautmann et al.* arXiv 1408.3015, Eur. Phys. J., C 74(12):3220, 2014.

- Also integrated pdfs (including photon pdf are available via LHAPDF)
- HELMHOLTZ Integrated PDF plotter **HEP** Links TMD Plotter Publications $p^2 = 25 \text{ GeV}^2$ Parameters p² = 25 GeV² y_{min} = 1.0E-5 y_{max} = 100 x_{min} = 1.0E-5 x_{max} = 1 10 PDFs 10-3 10 ccfm-JH-2013-set1 1. aluon NNPDF23_lo_as_0130_qed • 2. gluon NNPDF23 lo as 0130 ged 3. photon 4. gluon MRST2004ged_proton Output Format: ps · display ratio display command line Add PDF field © 2012-2016 Deutsches Elektronen-Synchrotron (DESY LHAPDF 6.1.4 and TMDlib 1.0.6
- Feedback and comments from community is needed just use it !

H. Jung, New approach for precision predictions using TMDs at hadron colliders, LHC discussion, DESY, May 28, 2018

Validation of method with QCDnum at NLO

• Very good agreement with NLO - QCDnum over all x and μ^2

• the same approach work also at NNLO !

- basic elements are:
 - Matrix Elements:
 - ➔ on shell/off shell
 - PDFs
 - ➔ TMDs
 - Parton Shower
 - ➔ following TMDs for initial state !
- Proton remnant and hadronization handled by standard hadronization program, e.g. PYTHIA

- Parton shower with TMDs follows exactly the evolution of the TMD
 - no (!) free parameter in shower
 - resolvable branchings and calculation of k_T defined in TMD
 - no adjustment of kinematics during/after shower

H. Jung, New approach for precision predictions using TMDs at hadron colliders, LHC discussion, DESY, May 28, 2018