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Physics at the LHC

We want to infer underlying physics from measurements in the detector.
How can deep neural networks assist us?

http://www.quantumdiaries.org/



Heavy Resonance Tagging

• Hadronically decaying top/Higgs/W/Z

• Contained in one (large-R) jet

• How to distinguish from light quark/gluon jets 
(and from each other)

• For new physics searches (and SM studies)

Some Classical solutions:  
(aka jet substructure)

• Mass 
Calculate using a grooming algorithm  
(eg mMDT/softdrop or pruning) 

• Centers of hard radiation 
n-subjettiness or energy correlation 
functions

• Flavour 
b tagging of large-R jets or subjets

• Soft substructure 
Color connection

• Inclusive reconstruction 
HEPTopTagger V2, HOTVR

• Other substructure variables 
Shower deconstruction, template tagger, …

Towards an Understanding of the Correlations in Jet Substructure  
D Adams et al (BOOST 2013 Participants), Eur.Phys.J. C75
Top Tagging, T Plehn, M Spannowksy, J.Phys. G39 (2012) 083001  
Boosted Top Tagging Method Overview, GK, Proc. Top2017



5 Constituent sequence ordering

We hypothesize that the order of the constituent sequence can provide salient information for signal/background
discrimination to the LSTM tagger, and thus develop sorting methods which attempt to represent the
underlying QCD and substructure of the jets, referred to as substructure ordering. In particular, we use
a recursive algorithm which utilizes the history of the initial anti-kT clustering to add constituents to the
input list in an order which reflects the jet substructure. Clustering algorithms e↵ectively produce a binary
tree from the reconstructed particles, as depicted in Fig. 1, where the intermediate jets are referred to as
“PseudoJets” and are constructed by summing the four-momenta of the particles or PseudoJets with the
smallest distance metric 2 at a given clustering step. The jet substructure sorting algorithm starts with
the final jet and is called on each of the parent PseudoJets. Recursion is called on the pseudojet whose
parents have a smaller dij . If one of the parents of the jet or PseudoJet under consideration is the original
jet constituent that constituent is added to the list and recursion is continued on the other parent. If both
parents of a jet or a PseudoJet are original constituents, both are added to the list with the higher pT one
added first and the recursion is terminated. Thus the ordering algorithm performs a depth-first traversal of
the clustering tree.

This method is compared to sequence ordering schemes that were previously tested on the DNN in [23],
namely sorting purely by pT of jet constituents, and “subjet sorting”. In the latter scheme first subjets are
arranged in a descending order by pT , and then constituents of given subjet are added to the list, also in
descending order by pT . Subjet sorting was found to yield the best performance in [23].

6 Network architecture

Figure 1: An example of the binary tree constructed
by jet algorithms during clustering and the resulting
constituent list ordering presented to the LSTM in the
substructure ordering scheme.

The best-performing network design consists of an
LSTM with state width of 128 connected to 64-node
dense layer. Only the output of the LSTM layer at
the last step is connected to the dense layer. This
architecture was found through heuristic search of the
number of LSTM layers, layer widths and presence
or lack of the of the dense layer. Several optimization
methods were tried with Adam [34] providing the
most stable training with highest final performance.
The input data used for network selection was the
trimmed, subjet sorted set with LHC2016 pileup.
The Keras suite [35] with the Theano [36] backend
was used to implement the model.

7 Performance

The primary interest of this study was to evaluate
how an LSTM network would compare to the previ-
ously developed DNN. Fig. 2 (left) shows receiver operating characteristic (ROC) curves for the DNN and
LSTM taggers under their respective best performing architectures and input conditions. The LSTM network
yields better performance than the DNN across all signal e�ciencies, in particular reaching a background
rejection of 100 at 50% signal e�ciency - greater than a factor of two improvement with respect to the DNN.

Table 1 shows the background rejection power of the network when di↵erent pileup level datasets are
analyzed and di↵erent constituent ordering schemes are used. The LSTM with substructure ordering displays a
higher dependence on pileup conditions than the LSTM with subjet ordering, which has the best performance

2The distance metric used is referred to as dij , i and j being indices of particles or PseudoJets in the event list, and is defined

as: dij = min(k2pti , k
2p
ti )

�2
ij

R2 , where kti is the transverse momentum of particle i. Exponent p defines the precise algorithm
used (p = 1 for kT , p = �1 for anti-kT or p = 0 for Cambridge-Aachen), R is the radius parameter of the clustering, and
�2

ij = (yi � yj)2 + (�i � �j)2, y being the rapidity
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Figure 1. Jet image after pre-processing for the signal (left) and background (right). Each picture is averaged
over 10,000 actual images.

pT,fat = 350 ... 450 GeV, such that all top decay products can be easily captured in the fat jet. For
signal events, we require that the fat jet can be associated with a Monte-Carlo truth top quark
within �R < 1.2.

We can speed up the learning process or illustrate the ConvNet performance by applying a set
of pre-processing steps:

1. Find maxima: before we can align any image we have to identify characteristic points. Using
a filter of size 3 ⇥ 3 pixels, we localize the three leading maxima in the image;

2. Shift: we then shift the image to center the global maximum taking into account the peri-
odicity in the azimuthal angle direction;

3. Rotation: next, we rotate the image such that the second maximum is in the 12 o’clock
position. The interpolation is done linearly;

4. Flip: next we flip the image to ensure the third maximum is in the right half-plane;

5. Crop: finally, we crop the image to 40 ⇥ 40 pixels.

Throughout the paper we will apply two pre-processing setups: for minimal pre-processing we apply
steps 1, 2 and 5 to define a centered jet image of given size. Alternatively, for full pre-processing
we apply all five steps. In Fig. 1 we show averaged signal and background images based on the
transverse energy from 10,000 individual images after full pre-processing. The leading subjet is in
the center of the image, the second subjet is in the 12 o’clock position, and a third subjet from
the top decay is smeared over the right half of the signal images. These images indicate that fully
pre-processed images might lose a small amount of information at the end of the 12 o’clock axis.

A non-trivial pre-processing step is the shift in the ⌘ direction, since the jet energy E is not
invariant under a longitudinal boost. Following Ref. [12] we investigate the e↵ect on the mass
information contained in the images,

m2
img =

"
X

i

Ei

✓
1,

cos�0
i

cosh ⌘0i
,

sin�0
i

cosh ⌘0i
,
sinh ⌘0i
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0
i , (11)
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Figure 1. Jet image after pre-processing for the signal (left) and background (right). Each picture is averaged
over 10,000 actual images.

pT,fat = 350 ... 450 GeV, such that all top decay products can be easily captured in the fat jet. For
signal events, we require that the fat jet can be associated with a Monte-Carlo truth top quark
within �R < 1.2.

We can speed up the learning process or illustrate the ConvNet performance by applying a set
of pre-processing steps:

1. Find maxima: before we can align any image we have to identify characteristic points. Using
a filter of size 3 ⇥ 3 pixels, we localize the three leading maxima in the image;

2. Shift: we then shift the image to center the global maximum taking into account the peri-
odicity in the azimuthal angle direction;

3. Rotation: next, we rotate the image such that the second maximum is in the 12 o’clock
position. The interpolation is done linearly;

4. Flip: next we flip the image to ensure the third maximum is in the right half-plane;

5. Crop: finally, we crop the image to 40 ⇥ 40 pixels.

Throughout the paper we will apply two pre-processing setups: for minimal pre-processing we apply
steps 1, 2 and 5 to define a centered jet image of given size. Alternatively, for full pre-processing
we apply all five steps. In Fig. 1 we show averaged signal and background images based on the
transverse energy from 10,000 individual images after full pre-processing. The leading subjet is in
the center of the image, the second subjet is in the 12 o’clock position, and a third subjet from
the top decay is smeared over the right half of the signal images. These images indicate that fully
pre-processed images might lose a small amount of information at the end of the 12 o’clock axis.

A non-trivial pre-processing step is the shift in the ⌘ direction, since the jet energy E is not
invariant under a longitudinal boost. Following Ref. [12] we investigate the e↵ect on the mass
information contained in the images,
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Performance 
Overview

4.2 Preprocessing Studies

The e↵ect of multiple di↵erent preprocessing steps were studied to optimise the tagger

performance. Figure 6 illustrates the performance gain from each sequential preprocessing

step: trimming, scaling, translation, rotation and finally flipping. Each step has a positive

impact on overall performance, with the final flipping step improving the performance only

marginally. Table 2 summarises the performance increase following each preprocessing

stage for the AUC and rejection for the given signal e�ciency operating points.
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Figure 6. ROC curve for DNNs trained on reconstruction level jets after each successive prepro-
cessing step. The LHC 2016 pileup scenario was used.

Preprocessing step AUC
Rejection at signal e�ciency of

20% 50% 80%

Trimming only 0.827 45 9 3.3

After scaling 0.904 130 22 6.3

After translation 0.920 175 30 7.9

After rotation 0.933 325 43 9.6

After flip 0.934 365 45 9.8

Table 2. Area under the curve and background rejection factors for 20%, 50% and 80% signal
e�ciency for the DNNs trained on reconstruction level jets after each successive preprocessing step.
The LHC 2016 pileup scenario was used.

The e↵ect of trimming and jet constituent ordering was also investigated. Figure 7

shows the impact of the jet trimming on the ROC curve, with the same subsequent pre-

processing steps applied in all cases. Trimmed jets typically perform better at the high

background rejection operating point often desired in an analysis setting. Networks trained

on jets without trimming perform marginally better at the signal e�ciency operating points

– 11 –

SciPost Physics Submission

Figure 3: ROC curve for the new DeepTopLoLa tagger, compared to the QCD-inspired
MotherOfTaggers and the image-based DeepTop tagger [20]. In all cases we only use
calorimeter information for soft fat jets, pT,fat = 350 ... 450 GeV.

3.1 Calorimeter

We consider the two standard ranges, moderately boosted tops available in Standard Model
processes and highly boosted tops in resonance searches,

pT,fat = 350 ... 450 GeV

pT,fat = 1300 ... 1400 GeV . (8)

In Fig. 2 we show the number of calorimeter-based 4-vectors kµ,i as well as their ordered
mean transverse momentum for the soft and hard fat jet selections of Eq.(8). For the soft and
hard selections we have tested values N = 10 ... 60 and find the using the leading N = 40
calorimeter constituents completely saturates the tagging performance. The remaining entries
will typically be much softer than the top decay products and hence carry little signal or
background information from the hard process.

For the softer fat jets we use 180,000 signal and 180,000 background events to train the
network, 60,000 events each for tests during training, and 60,000 events each to estimate the
performance. For technical reason the harder fat jets rely on a 10% smaller sample.

The network includes the CoLa, the LoLa, and two fully connected hidden layers, one with
100 and one with 50 nodes. It is trained using Keras [32] with the Theano [33] back-end,
the Adam optimizer, and a learning rate of 0.001. Training terminates either after 200 epochs
or when the performance on the test sample does not improve for five epochs, typically after
several tens of epochs. † We independently train five copies of the network, and compare
their performances on the independent validation sample.

Because of a long history of tests and applications on data, top taggers are especially useful
to establish the performance of machine learning tools. In Fig. 3 we compare our DeepTo-
pLoLa tagger to earlier benchmarks for the softer of the two selections in Eq.(8): a BDT of

†Using this setup, the training for the softer fat jets takes less than 15 minutes in total on a Tesla K80 using
a p2.xlarge computing instance on Amazon Web Services.
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Figure 8. Performance of the neural network tagger compared to the QCD-based approaches
SoftDrop plus N -subjettiness and including the HEPTopTagger variables.

where mfat is the un-groomed mass of the fat jet. This is similar to standard experimental

approaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition,

we include the HEPTopTagger2 information from filtering combined with a mass drop

criterion,

{ msd,mfat,mrec, frec,�Ropt, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (MotherOfTaggers) .

(3.5)

In figure 8 we compare these two QCD-based approaches with our best neural networks.

Firstly, we see that both QCD-based BDT analyses and the two neural network setups are

close in performance. Indeed, adding HEPTopTagger information slightly improves

the SoftDrop+N -subjettiness setup, reflecting the fact that our transverse momentum

range is close to the low-boost scenario where one should rely on the better-performing

HEPTopTagger. Second, we see that the di↵erence between the two pre-processing

scenarios is in the same range as the di↵erence between the di↵erent approaches. Running

the DeepTop framework over signal samples with a 2-prong W 0 decay to two jets with

mW 0 = mt and over signal samples with a shifted value of mt we have confirmed that the

neural network setup learns both, the number of decay subjets and the mass scale.

Following up on on the observation that the neural network and the QCD-based taggers

show similar performance in tagging a boosted top decay inside a fat jet, we can check what

kind of information is used in this distinction.

Both for the DNN and for the MotherOfTaggers BDT output we can study signal-

like learned patterns in actual signal events by cutting on the output label y corresponding

to the 30% most signal like events shown on the right of figure 3. Similarly, we can

require the 30% most background like events to test if the background patterns are learned

correctly. In addition, we can compare the kinematic distributions in both cases to the

– 14 –

DeepTop minimal
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Architecture
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Figure 4: Sequence of ROC curves (background rejection 1/✏B vs. tagging e�ciency ✏S) illustrating

the cumulative e↵ects of the various improvements to the DeepTop tagger, for the DeepTop jet sample.

Our final tagger including all the improvements is shown in orange.

ture, image preprocessing, sample size and color) to the DeepTop tagger in the preceding

sections, we are now ready to put them all together and quantify their cumulative ef-

fects on the tagger performance. Shown in figs. 4–6 and table 3 are ROC curves and

aggregate metrics characterizing these e↵ects. The baseline in these plots is always the

DeepTop minimal column in table 2, applied to the two di↵erent jet samples in table 1.

Each modification is then added cumulatively to this baseline. Here is a more detailed

breakdown (each entry here corresponds to moving from left to right sequentially in the

corresponding category of table 2):

• The end result of all of our improvements to the training (loss function and op-

timizer) is the blue curves in figs. 4-6. This gave the single largest boost to the

performance of all the di↵erent modifications we considered. Furthermore, we find

that over half of the improvement here is due solely to the smaller minibatch size.

16

Our top tagging reference sample:
https://goo.gl/XGYju3
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Learning from Data

Weakly Supervised Classification in High Energy Physics
LM Dery, B Nachman, F Rubbo, A Schwartzman, 1702.00414  
Learning to Classify from Impure Samples
PT Komiske, EM Metodiev, B Nachman, MD Schwartz, 1801.10158  
Classification without labels: Learning from mixed samples in high energy 
physics, EM Metodiev, B Nachman, J Thaler, 1708.02949  6
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 2. The AUC for the LLP and CWoLa methods as a function of the signal fraction f1, for
training sizes Ntrain of (a) 100 events, (b) 1k events, and (c) 10k events. Here, the complementary
signal fraction is f2 = 1� f1. By construction, the AUC for full supervision is independent of f1. The
horizontal dashed line indicates the fully-supervised AUC with infinite training statistics. For Ntrain

su�ciently large and f1 su�cient far from 0.5, all three methods converge to the optimal case.

on the number of training events and the signal fraction f1. The full supervision does not

depend on the signal composition of M1 and M2 as it is trained directly on labeled signal and

background examples. As expected, the performance is poor when the number of training

– 8 –

Distinguishing mixed samples is 
equivalent to signal/background 
classification!



b Quark Identification
• DeepCSV: Standard variables in deep neural 

network

• DeepFlavour: Complex architecture on per-
particle quantities

 7

Task to find the particle ID of  a jet, e.g. b-quark

Key features:
• Long lifetime of  heavy flavor 

quarks
• Displaced tracks, …
• Usage of  ML standard for this 

problem

5

Jet tagging

CNNchchar. part. RNNchCNNchchar. part. RNNchCNNchchar. part. RNNchCNNsvsec. vert. RNNsv

CNNchchar. part. RNNchCNNchchar. part. RNNchCNNchchar. part. RNNchCNNneneutr. part. RNNne

Classification
DNN

CNNchchar. part. RNNchCNNchchar. part. RNNchCNNchchar. part. RNNchCNNchcharg. part. RNNch

FC

global

Classification
DNN

~700 400 250
® ® ®

• Particle and vertex based DNN has factor 10 less free parameters than a 
generic Dense DNN would have

• 100M jets used for training, overtraining is not an issue

~ 700 inputs and 250.000 model parameters

17

Particle and vertex based DNN: DeepJet

Machine Learning for Jet Physics in CMS  
Markus Store (for CMS)  
Jets in ML Workshop, Berkeley, 2017
 
CMS DP 2017-013

DP-2017-013

Blue: generic DNN (650 inputs)
Green: CMS tagger (~65 human made inputs)
Red: Physics inspired DNN (650 inputs)

Particle&Vertex based DNN performs best
18

Impact of DNN architecture



Event Classification Example

 8

Distinguish signal and background sub-processes per 
jet-multiplicity category

Fully connected network based on
• object kinematics
• event shapes  

  (including Matrix Element Method output)
• b-tagging information 

Observation of ttH Production CMS PRL 120 (2018) 231801  
Search for ttH production in the H → bb decay channel with leptonic tt decays 
in proton-proton collisions at sqrt(s) = 13 TeV with the CMS detector  CMS 
Collaboration, PAS HIG-17-026  
Jet-Parton Assignment in ttH Events using Deep Learning  
M Erdmann, B Fischer, M Rieger, JINST 12 (2017) P08020
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on the jet pT, which shows some small pT-dependent
e↵ects, but no large features. As an alternative
strategy, we trained a network using an adversar-
ial strategy with respect to log(m/pT), which more
closely mimics the approach used in Ref. [9]; the
training succeeded in finding a network with a flat
response in log(m/pT), but the distortion in jet mass
was much more significant. In principle, it is possi-
ble to use the adversary to enforce a two-dimensional
decorrelation, but since the pT-dependence is not se-
vere here, we leave this for future study.
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FIG. 4. Signal e�ciency and background rejection
(1/e�ciency) for varying thresholds on the outputs of
several jet-tagging discriminants: traditional networks
trained to optimize classification, networks trained with
an adversarial strategy to optimize classification while
minimizing impact on jet mass, the unmodified ⌧21, and
the two DDT-modified variables ⌧ 0

21, and ⌧ 00
21. The signal

samples have mZ0 = 100 GeV for this example. Gener-
alization to other masses is shown in Sec. VII.

V. STATISTICAL INTERPRETATION

The ability to discriminate jets due the hadronic
decay of a boosted object from those due to a quark
or gluon is an important feature of a jet substruc-
ture tagging tool, but as discussed above it is not the
only requirement. Due to the necessity of accurately
modeling the background, it is desirable that the jet
tagger avoid distortion of the background distribu-
tion. Simpler background shapes are especially pre-
ferred because they allow for robust estimates that
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FIG. 5. Top left, relationship between jet mass and neu-
ral network output in background events for a network
trained to optimize classification compared to an adver-
sarial network trained to optimize classification while
minimizing dependence on jet mass. Top right, rela-
tionship between jet mass and jet substructure variable
⌧21 and the DDT-modified ⌧ 0

21 and ⌧ 00
21 which attempt

to minimize dependence on jet mass. Bottom left, pro-
file of neural network output versus jet mass for the ad-
versarial trained network with varying jet pT thresholds.
Bottom right, contour plot of neural network output ver-
sus jet mass in background events for the adversarially-
trained network. The signal sample used in training has
mZ0 = 100 GeV; generalization to other masses is shown
in Sec. VII.

are constrained by the sidebands; backgrounds that
can be modeled with fewer parameters and inflec-
tions avoid degeneracy with signal features, such as
a peak.

Fig. 5 shows qualitatively that the adversarial net-
work’s response is not strongly dependent on jet
mass. But a quantitative assessment is more dif-
ficult. Mass-independence is not in itself the goal;
instead, we seek reduced dependence on knowledge
of the background shape and reduced sensitivity to
the systematic uncertainties that tend to dilute the
statistical significance of a discovery.

However, our lack of knowledge of the true back-
ground model in general also makes it non-trivial to
rigorously define and estimate the background un-
certainty. In practice, experimentalists use an as-
sumed functional form, with parameters constrained
by background-dominated sidebands to predict the

5

Calibration/Correlations/Uncertainties

• Trade-off discrimination  
power and stability
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Decorrelated Jet Substructure Tagging using 
Adversarial Neural Networks

C Shimmin, P Sadowski, P Baldi, E Weik, D 
Whiteson, E Goul, A Søgaard 1703.03507  
Weight Uncertainty in Neural Networks

C Blundell et al,  ICML Proc’s 2015

be optimized like any other.
The classifier network in this experiment consisted

of eleven input features, three fully-connected hid-
den layers each with 300 nodes having hyperbolic
tangent activation functions, and a single logistic
output node with the binomial cross-entropy clas-
sification objective. The adversarial network con-
sisted of a single input, 50 nodes with hyperbolic
tangent activation functions, and a softmax output
layer with 10 classes corresponding to binned val-
ues of the jet invariant mass (each bin representing
one decile of the background), and the multi-class
cross-entropy classification objective.

Because the adversary is challenged with adapt-
ing to an ever-changing input as the classifier is
trained, and also because its task is relatively easy,
two strategies were used to train the adversary faster
than the classifier. First, the adversary was given
a head start at the beginning of training with 100
updates while the classifier was fixed. Second, the
adversary was trained with a larger learning rate of
1.0 compared to 10�3 for the tagger objective.

The data set used for experiments was divided into
training (80%), validation (10%, used for hyperpa-
rameter tuning), and testing (10%) subsets. Each
classifier input feature was log-scaled if the empirical
skew estimate was greater than 1.0, then standard-
ized to zero mean and unit variance. Model param-
eters were initialized from a scaled normal distribu-
tion [27].

Training was performed using stochastic gradient
descent, applied to mini-batches of 100 examples
from each class. During training, the event weights
were scaled so that the average weight for each class
was 1.0. However, in the adversarial loss function
Ladversary, the signal events were given zero weight,
rendering them invisible to the adversary.

Updates were made using a training momentum
term of 0.5; the learning rate decayed by a factor of
10�5 after each update. Training was stopped after
100 epochs, where an epoch was defined as a single
pass through the background samples (⇡ 400k train-
ing events). Models were implemented inKeras [28]
and Theano [29], and hyperparameters were opti-
mized on a cluster of Nvidia Titan Black processors.

IV. PERFORMANCE

We compare the discrimination power of five can-
didate classifiers: the NN trained without an ad-
versary, the adversarially-trained NN, the unmodi-
fied ⌧21, and the two DDT-modified variables ⌧ 021,
and ⌧ 0021. The performance can be characterized by

... ...X
fc(X)

fa(fc(X))

Lclassification Ladversary

Classifier Adversary

FIG. 3. Architecture of the neural networks in the ad-
versarial training strategy. The classifying network dis-
tinguishes signal from background using the eleven vari-
ables (X) described in the text. The adversarial network
attempts to predict the invariant mass using only the
output of the classifier, fc(X); note that the adversary
has multiple binary classification outputs, correspond-
ing to bins in jet invariant mass, rather than a single
regression output.

measuring the signal e�ciency and background re-
jection of various thresholds on these discriminators
(Fig. 4).

The variable ⌧ 021, which is modified to reduce cor-
relation with the mass, results in a modest decrease
in its classification power relative to the unmodified
⌧21 at mZ0 = 100 GeV, though note that these ef-
fects are mass-dependent for both ⌧ 021 and ⌧ 0021. Sim-
ilarly, the adversarial network does not match the
discrimination power of the traditional classification
network, due to the additional constraint imposed in
its optimization. However, both NNs are clearly able
to take advantage of the combined power of the sub-
structure variables, and o↵er a large improvement
in background rejection for similar signal e�ciencies
compared to classification based on ⌧21 alone.

The focus of this study, however, is to look be-
yond the pure discriminatory power of these tools
and study their e↵ect on the jet mass spectrum. In
Fig. 5, it can be seen that the adversarial network
output for background events has a profile which
is largely independent of jet mass, while the clas-
sifying network is strongly dependent on jet mass.
Similarly, ⌧ 021 and ⌧ 0021 have a lessened dependence
on jet mass, compared to ⌧21. Figure 6 shows the
e↵ect on the jet mass distribution of successively
stricter requirements on these variables. Note that
the adversarial network’s dependence on jet mass is
diminished, but not eliminated, as can be seen in
the contour plot of Fig. 5. This is a reflection of the
trade-o↵ inherent in balancing classification power
with jet mass dependence.

In Fig. 5, we also show the profile of the neural net-
work output versus jet mass, for various thresholds

4



FPGA DNN Triggers
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Fast inference of deep neural networks 
in FPGAs for particle physics
J Duarte et al
1804.06913

Upcoming talk in Joint Instrumentation Seminar (Date TBC)

• Framework to translate NNs to 
FPGAs for fast (L1 trigger) execution

• Latency of 75-150 ns



Pile-Up

• Predict pile-up distribution 
per-event

• Alternative (CMS): Can we 
improve PF/PUPPI with 
ML?

 11

Pileup Mitigation with Machine Learning (PUMML) 
PT Komiske et al
1707.08600



Generative Adversarial 
Networks 

L. de Oliveira, M Paganini, B Nachman:  
Learning Particle Physics by Example: Location-Aware Generative 
Adversarial Networks for Physics Synthesis,, Comput Softw Big Sci 
(2017) 1:4,  
Accelerating Science with Generative Adversarial Networks: An Application 
to 3D Particle Showers in Multi-Layer Calorimeters,  PRL 120, 042003  
CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer 
Electromagnetic Calorimeters with Generative Adversarial Networks, PR 
D 97, 014021  
Generating and refining particle detector simulations using the 
Wasserstein distance in adversarial networks M Erdmann et al, 
1802.03325
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10Modern Deep NN’s for Generation
Generative Adversarial Networks (GAN):  
A two-network game where one maps noise to images 
and one classifies images as fake or real.

{real,fake}

G
D

DPythia

GAN

noise

When D is maximally 
confused, G will be 
a good generator
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18Average Images
Geant4

CaloGAN

Alternative simulation of calorimeter events.
Several orders of magnitudes faster than Geant4

Simulation of cosmic air-showers captured by  
Cherenkov detector. Use to improve energy reconstruction!



Opening the Black Box
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DeepDream: Slighly modify image to increase classification 
score. Highlight the features the network learned

On the Information Bottleneck Theory 
of Deep Learning, Saxe et al,  

ICLR Proc 2018
Deep-learning Top Taggers or The End 

of QCD? 
GK, Tilman Plehn, Michael 

Russell, Torben Schell
JHEP 05 (2017) 006  

Weight Uncertainty in Neural 
Networks

C Blundell et al,  ICML Proc’s 2015

• What is necessary to trust a new algorithm?

• Learn what the network learns!

• Visualise decision process

• Encode physics in the network

• Correlation with known variables

• We want to understand,  
not just describe!

• Information theoretic approaches

Information Plane



Closing
• Presented (some) use cases


• Object identification


• Heavy resonances


• Jet flavour and gluon


• Event classification


• Calibration / Uncertainties


• Trigger


• Pile-Up


• Simulation


• Understanding

• Many ideas available 

• So far mostly on “pheno” level 

• Gain from actual use  
in experiments

Thank you!


