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The string landscape: dimensional reduction

String theory solutions with the potential to describe Einstein gravity &
the standard model at low energies are theories in a 10D spacetime.

Mig = My X
10 4 compact 6D manifold

GundXMdxN = 2A(y)gwdazudaz” +e2AW g dX™dX"

m,n=1,...,6 best understood non trivial Ricci flat
manifolds are Calabi-Yau threefold

wrv=1,...,4




The string landscape: dimensional reduction

We need to study how the degrees of freedom of the 10D theory look like upon
dimensional reduction in the 4D spacetime. In particular, deformations to Ymn that
preserve the Calabi-Yau conditions give rise to hundreds or even thousands of scalar

fields in the 4D theory with a geometric meaning — moduli.
/Kéhler deformations

complex structure
deformations




The string landscape: pheno & challenges

STRING LANDSCAPE

All possible values for the
hundreds/thousands of
scalar fields in a given
manifold

All possible manifolds

OBJECTIVE

To build controlled models,
be it for deSitter, inflation,
dark matter, etc, where all
fields have all corrections to

5 their potential and kinetic

sector under control.

Conjectures on the allowed
values of some of the
geometrical quantities.
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pheno & challenges

OBJECTIVE

To build controlled models,
be it for deSitter, inflation,
dark matter, etc, where all

fields have all corrections to
their potential and kinetic
sector under control.

Conjectures on the allowed
values of some of the
geometrical quantities.

CHALLENGES

Extremely hard to work outside of very
specific models — serious lamppost
problem

Hard to make global predictions (not
even mentioning the measure problem)

Hard to account for theoretical
uncertainties even for the simplest
models — no robust predictions




A network perspective for string model building

Q stochastic variable
A deterministic variable

Plate: repeat 1 times

T
a f3 hyperparameters
ol initial conditions
b c parameters appearing in L

p(Pc, ¢07 b7 C) — p(PC|¢07 b7 C)p(¢0)p(b)p(6)

n

More generally p(Xl, Ce ,Xn) — Hp(Xi’Xpa(i))

1=1

!

parent nodes




A network perspective for string model building

Q stochastic variable
A deterministic variable

Plate: repeat 1 times

T
a3 hyperparameters
Po initial conditions
b c parameters appearing in L

p(Pc, ¢07 b7 C) — p(PC|¢07 b7 C)p(¢0)p(b)p(6)

n

More generally p(Xl, . . ,Xn) = Hp(Xi|Xpa(i))

1=1

!

parent nodes




A data set of Calabi-Yau threefolds —
Kreuzer-Skarke database and others

Number of Kahler and complex structure moduli
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Exploring Calabi-Yau data sets with machine learning

CLASSIFICATION / CONJECTURE IDENTIFICATION

» Compute geometrical quantities algorithmically, which map out
to effective 4D potentials for scalar moduli. These computations
are hard for most CYs but known for some which can be used as
training data.

* |dentification of new patterns that can be analytically
investigated as a way of building new conjectures

-
High Energy Physics - Theory

High Energy Physics - Theory Machine Learning CICY Threefolds

Machine Learning in the String Landscape Kieran Bull, Yang-Hui He, Vishnu Jejjala, Challenger Mishra

. e, (Submitted on 8 Jun 2018)
Jonathan Carifio, James Halverson, Dmitri Krioukov, Brent D. Nelson

(Submitted on 3 Jul 2017) The latest techniques from Neural Networks and Support Vector Mafgfnes ESV
We utilize mact Qigh Energy Physics - Theory :

machine learnii

arising fromre | @arning non-Higgsable gauge groups in 4D F-theory
conjecture for 1

for when Eg ari ''-Nan Wang, Zhibai Zhang
appearance of ' (Submitted on 19 Apr 2018 (v1), last revised 1 May 2018 (this version, v3))



A network perspective for string model building
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Exploring Calabi-Yau data sets with machine learning

GGENERATION/ SEARCH FOR WORKABLE EXAMPLES

« Discover new workable lamppost examples. Understand and
find the specific anomalies that make these workable examples.

Data creation with
Generative Adversarial
Networks

Anomaly Detection:
Mapping the |IB Lamppost with
Reinforcement Learning

FABIAN RUEHLE (UNIVERSITY OF OXFORD)

string_data 2018

Jim Halverson
Northeastern University




Making robust predictions by exploring universality

Q stochastic variable
A deterministic variable

| Plate: repeat 1 times

a3 hyperparameters
Po initial conditions
b c parameters appearing in L

The task of making robust
predictions is greatly simplitied if
we can show that some nodes can
be safely “integrated out”




Towards robust predictions despite incomplete knowledge

L ARGE N UNIVERSALITY

Emergent simplicity is ubiquitous in complex systems and there are many
powerful tools to take advantage of it.

Example: Random Matrix Theory Gaussian orthogonal ensemble
Random matrices first introduced to physics by 030 |
Eugene Wigner. He modelled the nuclei of 025"
heavy atoms. 020 "

2 015

Postulated that the spacings between the lines o010l

in the spectrum of a heavy atom nucleus should 005t

resemble the spacings between the eigenvalues 000:- |
of a random matrix, and should depend only on S T S R
the symmetry class of the underlying evolution N

Mehta: Random Matrices


https://en.wikipedia.org/wiki/Eugene_Wigner
https://en.wikipedia.org/wiki/Eigenvalues

MINIMAL WORKING EXAMPLE: AXION MONODROMY

See Baumann and McAllister “Inflation and String Theory” for a review



MINIMAL WORKING EXAMPLE: AXION MONODROMY

Steps:

1. Identify relevant scales (class of models)

2. Learn the mapping from parameters to observables

order of magnitude estimates for model
parameters.

B Y
3. Study how predictions change according to prior
choice
Model dependent but often one can obtain
/l\
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See Baumann and McAllister “Inflation and String Theory” for a review



MINIMAL WORKING EXAMPLE: AXION MONODROMY

5 Y
Steps:
1. ldentity relevant scales (class of models)
2. Learn the mapping from parameters to observables

3. Study how predictions change according to prior /\
choice
N

We can use publicly available code to compute

observables for large sample of model parameters BUT : "o"
it is extremely expensivel! 0970 ' ' @
Use machine learning methods to learn this mapping. 0.974 [ foe"
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MINIMAL WORKING EXAMPLE: AXION MONODROMY

Steps:

1. Identify relevant scales (class of models)

2. Learn the mapping from parameters to observables

Consider a range of priors and compute the mutual
information (but we have been also using the KL divergence)

b, Y
3. Study how predictions change according to prior
choice
One approach is to use information theory.

/L\
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I(ns; 1) Zan p 10g[ Pltta, 1) ]
. i (ns)p(p)

See Baumann and McAllister “Inflation and String Theory” for a review



MINIMAL WORKING EXAMPLE: AXION MONODROMY
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The spectral index contains significantly more information about p than u




MINIMAL WORKING EXAMPLE: AXION MONODROMY
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Take away messages
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String phenomenology faces many
challenges which can be handled/ Explore universality of “information bottle-

alleviated from the point of view of neck” as a way to make robust predictions

data science — the string landscape




