

Invisible Higgs decays in Vector Boson Fusion

Othmane Rifki

LHC discussion on Dark Matter

23. Sep 2018

Outline

- •Why search for Higgs to Invisible?
- Vector boson fusion channel (VBF)
- Other Higgs to invisible limits
- Global fits from visible decays
- Higgs portal interpretation

Motivation

Higgs (H) is a special probe for **Dark Matter** (**DM**)

- •DM may "live" in some Dark Sector and not charged under gauge groups of the SM
- Higgs could have some coupling to the Dark Sector, i.e "Higgs Portal"
- Higgs acting as mediator between SM and DM

Direct production at the LHC

Motivation

• In the SM, H > Invisible only from H > ZZ > vvvv with $B(H > inv) = 0.026 \times 0.20^2 = 0.1 \%$

Any deviation would indicate BSM physics!

• Higgs to Invisible searches are powerful for $m_{DM} \leq m_{H}/2$

Why VBF?

Why not use ggH?

√s= 13 TeV ∄

VBF

128 130 М_н [GeV]

2.qq > Z > vv background is much larger than ggH production

$$\frac{\sigma(\text{ggH})}{\sigma(Z) \times BR(Z \to \nu\nu)} = \frac{\approx 45pb}{\approx 8422pb} \qquad \qquad \frac{\sigma(\text{VBF H})}{\sigma(\text{VBF }Z) \times BR(Z \to \nu\nu)} = \frac{\approx 3.8pb}{\approx 2.9pb}$$

Focus on processes where signal ~ background

 10^2 [qd] (X+H \uparrow dd) ρ

 10^{-1}

120

 $pp \rightarrow H (N3LO QCD + NLO EW)$

→ qqH (NNLO QCD + NLO FW)

 $pp \rightarrow WH (NNLO QCD + NLO EW)$

→ tH (NLO QCD

122

ggH

 \rightarrow bbH (NNLO QCD in 5FS, NLO QCD in 4FS)

124

126

VBF Topology

- 2 well-separated jets
- Large missing transverse momentum

Signal and Background

Selection

Basic 2-jet+MET Selection

- Jet 1: pT > 80 GeV
- Jet 2: pT > 50 GeV
- Veto 3rd jet above 25 GeV
- MET > 180 GeV (determined by trigger)

MET cleaning

- |DPhi(j,MET)| > 1
- $|\mathsf{DPhi}(j,j)| < 1.8$

Multijet Background

QCD multijet background is small for analysis selection Difficult to estimate since it is due to instrumental effect

Othmane Rifki

VBF H Invisible

Multijet Background

Multijet background under control

Multijet events also contribute to regions with electrons if one jet is misidentified as electron

• Additional MET significance requirement (high and low MET sig. used in fit)

$$E_{\rm T}^{\rm miss} \, \text{sig.} = \frac{E_{\rm T}^{\rm miss}}{\sqrt{p_{\rm T}(j1) + p_{\rm T}(j2) + p_{\rm T}(el)}}$$

Othmane Rifki

Backgrounds

W and Z backgrounds are ~50/50

Small top and diboson background from MC Multijet reduced by SR cuts Background estimation next...

Description	SR		
	Yield	[EW]	
N, observed	2252		
B, expected	2243		
$Z \rightarrow \nu \nu$	1111	[18%]	
$Z \rightarrow ee, \mu\mu$	12	[9%]	
$Z \rightarrow \tau \tau$	10	[16%]	
$W \rightarrow e\nu, \mu\nu$	540	[16%]	
$W \rightarrow \tau \nu$	533	[20%]	
Other	36		
S, signal	1070		
VBF	930		
Gluon fusion	140		

Signal for 100% branching fraction Larger EW fraction at higher Mjj

Othmane Rifki

Background Modelling

Statical uncertainty: 1/sqrt(2252) ~ 2% **Systematic uncertainty**: ~20%

- Modelling of underlying physics of W or Z + 2 jets
- Jet uncertainties (forward jets, jet veto)

MC systematics are too large to exploit the full statistics!

Solution: Use Z>II and W>Iv data with found leptons to model Z>vv and W>Iv (with lost lepton)

Define control regions:

- Z CR: 2-leptons, use **II-system** instead of **MET**
- W CR: 1-lepton, add 1-lepton pT to the MET

Background Modelling

Use precise measurement of V1 to get an improved prediction for V2:

Simultaneous fit to **signal region** and **Z and W control regions** leads to cancellation of important theory uncertainties

Uncertainties

Systematics reduction with ratio method:

Source	\mathcal{B}_{inv} improve. [%] using all m_{ii} bins		Yields, α changes (%) in $1 < m_{ij} < 1.5$ TeV				(%) V
	Δ	visual	S	$B_{\rm SR}^Z$	B_{cR}^Z	α_Z	α_W
Experimental (†)							
Jet energy scale	10	+	12	7	8	8	6
Jet energy resol.	2	+	2	0	1	1	4
$E_{\rm T}^{\rm miss}$ soft term	1	+	2	2	2	2	2
Lepton id., veto	2	+	-	-	-	-	4
Pileup distrib.	1	+	3	1	2	3	1
Luminosity	0		2	2	2	-	-
Theoretical (‡)							
Resum. scale	1	+	-	2	3	0	2
Renorm., fact.	2	+	-	20	19	1	2
сккw matching	4	+	-	2	3	1	5
PDF	0		1	1	2	1	1
3 rd jet veto	2	+	7	-	-	-	-
Statistical							
MC sample (*)	12	+	4	5	9	10	9
Data sample	21		6	5	12	12	6
Combined							
All † sources	17						
All ‡ sources	10						
Combine †, ‡	28						
Combine †, ‡, ★	42						

QCD scale variations are treated as correlated

Many uncertainties due to MC stat!

Fit Model

Global likelihood fit using 8 control region bins for each signal region bin

- Signal region bins defined in Mjj: 1-1.5TeV, 1.5 2TeV, > 2TeV
- Each Mjj bin is treated independently
- Separate normalisation factors for W and Z processes: 3x2 factors
- 1 normalisation factor for mis-identified electrons
- 1 signal yield correlated across all bins
- Systematics implemented as correlated Gaussian constrained nuisance parameters

27 bins, 9 free parameters, 1 signal yield

Pre-fit

Global likelihood fit with 27 bins, 9 free parameters, 1 signal yield

Post-fit

Global likelihood fit with 27 bins, 9 free parameters, 1 signal yield

Upper bound on branching fraction of Higgs to Invisible at 95% CL: **Observed = 0.37 Expected = 0.28**

CMS Result

Cut-and-Count

Observed = 0.58Expected = 0.30

Shape-fit MC

Observed = 0.33Expected = 0.25

Other Higgs to Invisible

Invisible Higgs decays comparisons

For upper limits, smaller is better. 95% conf. level. Selected competitive results are shown.

If a signal is observed, then it will have to be in multiple places!

Global Higgs fits

There is another way to constrain Higgs to invisible...

Use the higgs visible decays!

Higgs decays would be suppressed if the Higgs have an additional decay mode

$$\sigma (ggH) \times BR (H \to WW) = \sigma (ggH) \frac{\Gamma_{WW}}{\Gamma_{\text{total}}}$$

 $\Gamma_{\text{total}} = \Gamma_{\text{bb}} + \Gamma_{\text{WW}} + \Gamma_{\text{ZZ}} + \ldots + \Gamma_{\text{BSM}}$

Do a global fit using all the measurements to get limits on the k_X parameters

Decay channels	κ_i assumption	Upper 1	limit on BR _{inv}	Combination of direct searches
		Obs.	Exp.	Combination of an cot scarches
Invisible decays	$\kappa_{W,Z,g} = 1$	0.25	0.27	-Indiract limit from visible processes
Visible decays	$\kappa_{W,Z} \leq 1$	0.49	0.48	
Inv. & vis. decays	None	0.23	0.24	Combination of everything
Inv. & vis. decays	$\kappa_{W,Z} \leq 1$	0.23	0.23	
		-		under two assumptions

Othmane Rifki

VBF H Invisible

Higgs Portal Interpretation

Higgs to invisible provides strong constraint on DM for $m_{DM} < m_{H}/2$

Strong complementarity with direct dark matter searches:

- H to invisible not sensitive above mH/2
- Direct DM not sensitive below m_{DM} ~ 10 GeV
- Overlap in 10 60 GeV

Extrapolating between W and Z

- Z > II statistics is really poor due to small branching ratio (II:7% vs. vv:20%)
- Using 166 Z > II events to model 1111 Z > vv events!
- W events give x10 more stats.

Why don't we use W's?

We do not know how to correlate theory uncertainties when extrapolating between EWK+QCD W and Z in the presence of nontrivial VBF selection

Description	SR	W CR	Z CR	
	Yield [Ew]	Yield [ew]	Yield [Ew]	
N, observed	2252	1602	166	
B, expected	2243	1648	183	
$Z \rightarrow \nu \nu$	1111 [18%]	-	-	

Theorist of the month

arXiv:1705.04664

Precise predictions for V+jets dark matter backgrounds

J. M. Lindert^{II}, S. Pozzorini^I, R. Bougheza^{II}, J. M. Campbell^I, A. Denner^{II}, · · ·

Combination of state-of-the-art predictions (N)NLO QCD+(N)NLO EW in order to match (future) experimental sensitivities (1-10% accuracy in the few hundred GeV-TeV range)

Jonas Lindert Theorist of the month of October At DESY the week of October 22nd

The puzzle of Dark Matter – assembling the pieces

Symposium on joint interpretation of collider, direct and indirect dark matter searches

We would be happy to welcome you to our Symposium at DESY

- Combination and comparisons of Dark Matter searches at colliders, direct and indirect experiments
- Including input from theory
- Exciting line-up of talks and topics
- Young Scientist Forum
- Dark Matter show at the planetarium (outreach)

Registration deadline

October 10th

Fit model

 $B_{\rm SR}^{\rm est} = B_{\rm SR} \cdot \underbrace{N_{\rm CR}/B_{\rm CR}}_{k \text{ normalization}} = N_{\rm CR} \cdot \underbrace{B_{\rm SR}/B_{\rm CR}}_{\alpha \text{ factor}}$

Summary of fit model, each bin of m(jj) is treated separately according to the model shown here.

					7	Actually the in char	inned rge
	SR	ee	րր	e MET sig. > 4	e MET sig. < 4	μ	
Signal	μxS						
Z	kz x Bz	$kz \ge Bz$	$kz \ge Bz$	kz x Bz	kz x Bz	kz x Bz	
W+jets	$k_W \ge B_W$	$k_W \ge \mathbf{B}_W$	$k_W \ge B_W$	$k_W \ge B_W$	$k_W \mathrel{x} B_W$	$k_W x B_W$	
mis-ID				β	Rxβ		
Bw ₍	_{z)} : predicti from MC	on		R: ratio loose no	from β ot tight	i: normaliza of mis-ID componen	tion) it

m_{jj}	k_W	k_Z	β	
1.0 – 1.5 TeV	0.91 ± 0.18	1.10 ± 0.27	3.63 ± 1.76	
1.5 – 2.0 TeV	0.94 ± 0.18	0.98 ± 0.23	4.0 ± 1.47	
> 2.0 TeV	1.07 ± 0.19	1.13 ± 0.27	6.8 ± 2.13	

Yields

Description	SF	2	W	CR	Z	CR
	Yield	[EW]	Yield	[EW]	Yield	[EW]
N, observed	2252		1602		166	
B, expected	2243		1648		183	
$Z \rightarrow \nu \nu$	1111	[18%]	-		-	
$Z \rightarrow ee, \mu\mu$	12	[9%]	38	[9%]	181	[23%]
$Z \rightarrow \tau \tau$	10	[16%]	11	[16%]	-	
$W \rightarrow ev, \mu v$	540	[16%]	1400	[30%]	-	
$W \rightarrow \tau \nu$	533	[20%]	130	[34%]	-	
Other	36		67		2	
S, signal	1070		-		-	
VBF	930		-		-	
Gluon fusion	140		-		-	

	1 - 1.5TeV	1.5 - 2TeV	> 2TeV
Observed	952	667	633
Background	850 ± 113	660 ± 90	590 ± 81
Signal	300	310	460
S/B	0.4	0.5	0.8

Background Modelling

$$\frac{d\sigma(V_2)}{dx} = \left[\frac{d\sigma(V_2)/dx}{d\sigma(V_1)/dx}\right]_{\text{theory}} \times \left[\frac{d\sigma(V_1)}{dx}\right]_{\text{measured}}$$

Othmane Rifki

VBF H Invisible

Global Higgs fits

For each Higgs coupling add a parameter κ which describes its deviation from the SM (SM when $\kappa_x=1$)

$$k_h^2 = \Gamma_h / \Gamma_{h,SM} = \Sigma_j k_j^2 B R_j / (1 - B R_{inv})$$

W/Z + Jets

W/Z + Jets

Simulation

CMS

QCD(a_{EW}²): MG5 aMC@NLO at LO in **a**_s for up to 4 partons **EWK(\alpha_{EW}^4)**:MG5_aMC@ NLO at LO in **a**_s for up to 2 partons Corrections: apply pTmjj dependent NLO corrections to the V+jets NLO and EWK

QCD(a_{EW}²): Sherpa NLO in **a**_s for the first 2 partons, LO for up to 4 partons **EWK(a_{EW}⁴)**: Sherpa LO in **a**_s for up to 3 partons Interference(a_{EW}³): modelled with MG5 aMC@NLO

Comparisons with CMS

Requirement	CMS cut-and-count	CMS Shape	ATLAS	Background
е(μ)(т)	< 10 (10)	(18) GeV	<7 (7) (-) Gev	Z(II), W(Iv)
Jet p⊤	> 80 (40) GeV		>80 (50) GeV	All
Jet Pileup Removal	PFI	OW	JVT > 0.59	QCD multijet
Third Jet Veto	_	-	< 25 GeV	ggH
МЕТ	> 250	GeV	> 180 GeV	QCD, tt, W+jets
МНТ	_	-	> 150 GeV	QCD multijet
Δ φ(jj)	< 1	.5	< 1.8	Z(vv), W(lv)
Δφ(j,ΜΕΤ)	0.	5	1.0	QCD multijet
m(jj)	> 1300 GeV	> 200 GeV	1-1.15, 1.5-2, >2 TeV	Z(vv), W(lv)
Δη(jj)	> 4	> 1	> 4.8	Z(vv), W(lv)
γ, b-jet	Ve	to	—	top, γ, Vγ

Search Channels

