

DESY LHC Physics Discussion October 15, 2018

Extraction of top quark mass and strong coupling constant from inclusive $t\bar{t}$ cross section

Matteo Defranchis, Deutsches Elektronen-Synchrotron (DESY)

on behalf of the CMS Collaboration

outline of this presentation

introduction and motivation

- why do we want to measure $lpha_{
 m S}$ and $m_{
 m t}$
- how to extract them from the inclusive $\ensuremath{\mathrm{t}\bar{\mathrm{t}}}$ cross section

a little bit of history

- extraction of $lpha_{
 m S}$ and $m_{
 m t}^{
 m pole}$ at 7 TeV
- extraction of $m_{
 m t}^{
 m pole}$ at 7+8 TeV

preliminary CMS results at 13 TeV

- strategy of 13 TeV analysis
- details about measurement of $\sigma_{
 m tar t}$
- extraction of $lpha_{
 m S}$ and $m_{
 m t}$ at 13 TeV

outline of this presentation

🛞 🎽

introduction and motivation

- why do we want to measure $lpha_{
 m S}$ and $m_{
 m t}$
- how to extract them from the inclusive $\ensuremath{t\bar{t}}$ cross section

a little bit of history

- extraction of $lpha_{
 m S}$ and $\textit{m}_{
 m t}^{
 m pole}$ at 7 TeV
- extraction of $m_{
 m t}^{
 m pole}$ at 7+8 TeV

preliminary CMS results at 13 TeV

- strategy of 13 TeV analysis
- details about measurement of $\sigma_{
 m tar t}$
- extraction of $lpha_{
 m S}$ and $m_{
 m t}$ at 13 TeV

introduction and motivation

calculations of $\mathrm{t}\bar{\mathrm{t}}$ production depend on:

- 1 strong coupling α_S
- **2** top quark mass $m_{\rm t}$
- **3** gluon (quark) PDF in the proton
- \rightarrow measurements of $\sigma_{t\bar{t}}$ can be used to constrain these parameters

strong coupling

- α_{S} known with sub-percent precision
- significant contribution to uncertainty for several QCD predictions
- can be measured at NNLO from $\sigma_{t\bar{t}}$ (NLO for hadronic jet production)

top quark mass

- consistency test of Standard Model
- can be determined in well defined scheme ($\overline{\rm MS}$, on-shell) from $\sigma_{t\bar{t}}$
- avoid interpretation problems of $m_{
 m t}^{
 m MC}$
- \rightarrow NB: α_{S} and m_{t} cannot be determined simultaneously from inclusive $\sigma_{t\bar{t}}$

determination of $\alpha_{ m S}({ m M_Z})$ from $\sigma_{ m t\bar t}$ at 7 TeV

Phys. Lett. B 728 (2013) 496

- using CMS measurement at 7 TeV in dilepton channel with 2.3 fb⁻¹, 4.1% accuracy (JHEP 11 (2012) 067)
- theory prediction with Top++2.0, NNLO+NNLL precision
- several different PDF sets considered
- $\alpha_{\rm S}({\rm M_Z})$ varied consistently in calculation and PDF
- experimental dependence of $\sigma_{t\bar{t}}$ on $\alpha_S(M_Z)$ found to be negligible
- assumed $m_{
 m t}^{
 m pole} = 173.2 \pm 1.4 \, {
 m GeV}$ (Tevatron average \oplus 1 GeV to account for difference between $m_{
 m t}^{
 m pole}$ and $m_{
 m t}^{
 m MC}$)

 $\alpha_{\rm S}({\rm M_Z}) = 0.1151 \stackrel{+0.0028}{_{-0.0027}}$ (NNPDF2.3)

determination of $m_{ m t}^{ m pole}$ from $\sigma_{ m tar t}$ at 7 TeV

Phys. Lett. B 728 (2013) 496

- same procedure used to extract $m_{
 m t}^{
 m pole}$
- assumed world average strong coupling: $\alpha_{\rm S}({\rm M_Z})=0.1184\pm0.0007$
- measured $\sigma_{
 m tar t}$ depends on $m_{
 m t}^{
 m MC}$ through acceptance corrections
- effect has to be taken into account

assumption: $m_{
m t}^{
m pole} = m_{
m t}^{
m MC} \pm 1 \, {
m GeV}$

• additional uncertainty corresponding to 1 GeV added to measured $\sigma_{t\bar{t}}$

$$m_{\rm t}^{\rm pole} = 176.7 \stackrel{+3.0}{_{-2.8}} \, {\rm GeV} \quad ({\rm NNPDF2.3})$$

determination of $m_{ m t}^{ m pole}$ from $\sigma_{ m tar t}$ at 7+8 TeV

JHEP 08 (2016) 029

- simultaneous measurement of $\sigma_{t\bar{t}}$ at 7 and 8 TeV with template fit of final state distributions
- similar $m_{
 m t}^{
 m pole}$ determination as in 7 TeV measurement
- \textit{m}_{t}^{pole} determined separately from $\sigma_{t\bar{t}}$ at 7 and 8 TeV
- results combined taking correlations into account

	$m_{\rm t}$ [GeV]
NNPDF3.0	$173.8^{+1.7}_{-1.8}$
MMHT2014	$174.1^{+1.8}_{-2.0}$
CT14	$174.3^{+2.1}_{-2.2}$

	<i>m</i> t [GeV]		
	7 TeV	8 TeV	
NNPDF3.0	$173.5\substack{+1.9 \\ -2.0}$	$174.2^{+2.0}_{-2.2}$	
MMHT2014	$173.9\substack{+2.0\\-2.1}$	$174.4^{+2.1}_{-2.3}$	
CT14	$174.1\substack{+2.2\\-2.4}$	$174.6\substack{+2.3\\-2.5}$	

outline of this presentation

introduction and motivation

- why do we want to measure $lpha_{
 m S}$ and $m_{
 m t}$
- \bullet how to extract them from the inclusive $t\bar{t}$ cross section

a little bit of history

- extraction of $lpha_{
 m S}$ and $m_{
 m t}^{
 m pole}$ at 7 TeV
- extraction of $m_{\rm t}^{\rm pole}$ at 7+8 TeV

preliminary CMS results at 13 TeV

- strategy of 13 TeV analysis
- details about measurement of $\sigma_{
 m tar t}$
- extraction of $lpha_{
 m S}$ and $m_{
 m t}$ at 13 TeV

strategy of 13 TeV analysis

- simultaneous fit of $\sigma_{
 m t\bar{t}}$ and $m_{
 m t}^{
 m MC}$
- $\sigma_{t\bar{t}}$ determined at optimal mass point
- \rightarrow with this approach:
 - dependence of $\sigma_{
 m tar t}$ on $m_{
 m t}^{
 m MC}$ mitigated
 - uncertainty on $\sigma_{
 m t\bar{t}}$ includes contribution from $m_{
 m t}^{
 m MC}$
 - no assumption on relation between $m_{
 m t}^{
 m MC}$ and $m_{
 m t}$ needs to be made

calculations of $\sigma_{\mathrm{t}\overline{\mathrm{t}}}$

- Hathor2.0 at NNLO precision
- several NNLO PDF sets considered
- $\overline{\mathrm{MS}}$ scheme adopted for m_{t}
 - \rightarrow faster perturbative convergence (see EPJC 74 (2014) 11 3167)
- soft gluon resummation not included

PRL 116 (2016) 16 162001

Doutechoe Elektronon Sunchrotron (DE

7/17

CMS-PAS-TOP-17-001

measurement results

$$\begin{split} \sigma_{t\bar{t}} &= 815 \pm 2 \, (\text{stat}) \pm 29 \, (\text{syst}) \pm 20 \, (\text{lum}) \, \text{pb} \\ m_t^{\rm MC} &= 172.33 \pm 0.14 \, (\text{stat}) \pm ^{0.66}_{0.72} \, (\text{syst}) \, \text{GeV} \end{split}$$

strategy of 13 TeV analysis

- simultaneous fit of $\sigma_{
 m tar t}$ and $m_{
 m t}^{
 m MC}$
- $\sigma_{
 m t\bar{t}}$ determined at optimal mass point

 \rightarrow with this approach:

- dependence of $\sigma_{
 m tar t}$ on $m_{
 m t}^{
 m MC}$ mitigated
- uncertainty on $\sigma_{
 m t\bar{t}}$ includes contribution from $m_{
 m t}^{
 m MC}$
- no assumption on relation between $m_{
 m t}^{
 m MC}$ and $m_{
 m t}$ needs to be made

calculations of $\sigma_{ m t\bar{t}}$

- Hathor2.0 at NNLO precision
- several NNLO PDF sets considered
- $\overline{\text{MS}}$ scheme adopted for m_{t} \rightarrow faster perturbative convergence (rec EP IC 74 (2014) 11 3167)
- soft gluon resummation not included

PRL 116 (2016) 16 162001

CMS-PAS-TOP-17-001

measurement results

$$\begin{split} \sigma_{t\bar{t}} &= 815 \pm 2 \, (\text{stat}) \pm 29 \, (\text{syst}) \pm 20 \, (\text{lum}) \, \text{pb} \\ m_t^{\rm MC} &= 172.33 \pm 0.14 \, (\text{stat}) \pm ^{0.66}_{0.72} \, (\text{syst}) \, \text{GeV} \end{split}$$

top pair production cross section: general procedure

• observed $\sigma_{t\bar{t}}^{vis}$ is extrapolated to full phase space to get total cross section $\sigma_{t\bar{t}}$ \rightarrow introduces model dependence

$$\begin{aligned} \sigma_{\mathrm{t}\bar{\mathrm{t}}}^{\mathrm{vis}} &=& \frac{N_{\mathrm{data}} - N_{\mathrm{bkg}}}{\epsilon_{\mathrm{sel}} \cdot L_{\mathrm{int}}} \\ \sigma_{\mathrm{t}\bar{\mathrm{t}}} &=& \frac{\sigma_{\mathrm{t}\bar{\mathrm{t}}}^{\mathrm{vis}}}{A_{\mathrm{sel}} \cdot \mathrm{BR}} \end{aligned}$$

Top Pair Branching Fractions

"golden" decay channels for $\sigma_{t\bar{t}}$ measurement

- di-leptonic channels, in particular $e\mu$
- I+jets channels $(I = e, \mu)$
- \rightarrow all-hadronic channel penalized by JES, modelling and b-tagging uncertainties

triggers: dilepton OR single lepton

offline selection

- at least two opposite-charge leptons:
 $$\begin{split} p_{T\,1} &> 25 \text{ GeV}, \ p_{T\,2} > 20 \text{ GeV} \\ &|\eta| < 2,4, \ \textit{m}_{ll} > 20 \text{ GeV} \end{split}$$
- jets: $\mathrm{p_{T}} >$ 30 GeV and $|\eta| <$ 2.4
- b-tagging: CSVv2 Tight WP (0.1% mis-identification, 40% efficiency)

 \rightarrow events classified in mutually-exclusive categories according to lepton flavour, b-tag and jet multiplicity

method: template fit to distributions of final state observables

- systematic uncertainties treated as nuisance parameters and constrained in the visible phase space (with exception of luminosity)
- events categorized in **bins of jet and b-tag multiplicities** in order to constrain modelling uncertainties and b-tagging efficiencies
- result extrapolated to full phase space

- ${\scriptstyle 0}$ jet $p_{\rm T}$ spectra are used to constrained JEC uncertainties
- $_{
 m 20}~m_{
 m lb}^{
 m min}$ distribution used to constrain $m_{
 m t}^{
 m MC}$

 $m_{lb}^{min} =$ minimum invariant mass between reconstructed lepton and b-jet (sensitive to m_t^{MC} through end point of spectrum)

pre-fit distributions

0 b-tags: 0,1,2,3 additional jets

1 b-tag: 0,1,2,3 additional jets

∧eD/st 1500

> ພິ້ 1000 500

opendo.e

2 b-tags: 0,1,2,3 additional jets

CMS-PAS-TOP-17-001

35.9 fb⁻¹(13 TeV)

Data

Additional jet p_

CMS Pretimine

35.9 fb⁻¹ (13 TeV

120 140 160 180 20 Additional jet p_ [GeV] VaQeV 100

bued of

binned Poisson Likelihood

$$L = \prod_{i} \exp \left[\mu_{i}\right] \mu_{i}^{n_{i}} / n_{i}! \cdot \prod_{m} \pi(\lambda_{m})$$
$$\mu_{i} = s_{i}(\sigma_{t\bar{t}}^{vis}, \vec{\lambda}) + \sum_{k} b_{k,i}^{MC}(\vec{\lambda})$$

- $\vec{\lambda}$ is a set of nuisance parameters
- $\pi(\lambda_m)$ parametrizes the prior knowledge of $m^{
 m th}$ parameter

b-tagging efficiencies determined *in situ* by exploiting the $t\bar{t}$ topology:

$$\begin{array}{lll} \mathbf{s}_{1\mathrm{b}} & = & \mathcal{L}\sigma_{\mathrm{tt}}^{\mathrm{vis}}\epsilon_{\ell\ell} \cdot 2\epsilon_{\mathrm{b}}(1-\mathcal{C}_{\mathrm{b}}\epsilon_{\mathrm{b}}) \\ \mathbf{s}_{2\mathrm{b}} & = & \mathcal{L}\sigma_{\mathrm{tt}}^{\mathrm{vis}}\epsilon_{\ell\ell} \cdot \epsilon_{\mathrm{b}}^{2}\mathcal{C}_{\mathrm{b}} \\ \mathbf{s}_{\mathrm{other}} & = & \mathcal{L}\sigma_{\mathrm{tt}}^{\mathrm{vis}}\epsilon_{\ell\ell} \cdot (1-2\epsilon_{\mathrm{b}}(1-\mathcal{C}_{\mathrm{b}}\epsilon_{\mathrm{b}})-\mathcal{C}_{\mathrm{b}}\epsilon_{\mathrm{b}}^{2}) \end{array}$$

- $\epsilon_{\ell\ell}$ is the efficiency if the di-lepton selection
- $\epsilon_{\rm b}$ is the b-tagging efficiency
- $C_{\rm b}$ represents the residual correlation of tagging the two b-jets

results for $\sigma_{t\bar{t}}$ and m_t^{MC}

Contribution [%] 0.4 0.7

0.5

07 0.2 1.2 0.4 0.5 0.2 0.3 0.40.4 0.2

1.0 0.2 0.4

0.80.3

0.3 0.2 1.2 12.86 pb

<0.

 $\mp^{<0.1}_{<0.1}$ $\pm^{0.2}_{0.2}$

 \pm^{2}_{4}

815 pb

	Trigger	
	Lepton ID/isolation	
	Electron energy scale	7
	Muon energy scale	
	Jet energy scale	
	Jet energy resolution	
	b tagging	
(lum) nh	Pileup	
(iuiii) po	tī ME scale	
	tW ME scale	
	DY ME scale	
	NLO generator	
	PDF	
	m ^{MC}	
(ct) GoV	Top quark p_T	
yst) Gev	ME/PS matching	
	UE tune	
	tī ISR scale	
	tW ISR scale	
	tī FSR scale	
	tW FSR scale	
	B-Fragmentation	
	B-hadron BF	
	Colour reconnection	
	DY background	
	tW background	
	Diboson background	
	W+jets background	
	tī background	
	Statistical	
AC	Luminosity	
	MC Statistical	1
	Total vis	ĩ
	$\sigma_{t\bar{t}}(13 \text{ TeV}) \text{ vis}$	Ē
	tf ME scale (extr)	1

Name

PDF (extr) Top quark p_T (extr) tĒ ISR scale (extr) tī FSR scale (extr) UE tune (extr)

 m_{1}^{MC} (extr)

σ₀₇(13 TeV)

total tt cross section

 $\sigma_{t\bar{t}} = 815 \pm 2 \, (stat) \pm 29 \, (syst) \pm 20$

main systematic uncertainties on $\sigma_{t\bar{t}}$

- integrated luminosity (2.5%)
- lepton identification (2.2%)

_		

total $\mathrm{t}\bar{\mathrm{t}}$ cross section

 $\sigma_{
m tar t}=$ 815 \pm 2 (stat) \pm 29 (syst) \pm 20 (lum) pb

top MC mass $m_{\rm t}^{\rm MC}=172.33\pm0.14\,({\rm stat})\pm^{0.66}_{0.72}\,({\rm syst})\,{\rm GeV}$

main systematic uncertainties on $\sigma_{t\bar{t}}$

- integrated luminosity (2.5%)
- lepton identification (2.2%)

main systematic uncertainties on $m_{\rm t}^{\rm MC}$

- jet energy scale (570 MeV)
- statistics of simulation (360 MeV)

total $t\bar{t}$ cross section $\sigma_{t\bar{t}} = 815 \pm 2 \text{ (stat)} \pm 29 \text{ (syst)} \pm 20 \text{ (lum) pb}$

top MC mass $m_{\rm t}^{\rm MC} = 172.33 \pm 0.14\, ({\rm stat}) \pm^{0.66}_{0.72}\, ({\rm syst})\, {\rm GeV}$

main systematic uncertainties on $\sigma_{
m tar t}$

- integrated luminosity (2.5%)
- lepton identification (2.2%)

main systematic uncertainties on $m_{\rm t}^{\rm MC}$

- jet energy scale (570 MeV)
- statistics of simulation (360 MeV)

Name	Contribution [GeV]
Trigger	0.02
Lepton ID/isolation	0.02
Electron energy scale	0.10
Muon energy scale	0.03
Jet energy scale	0.57
Jet energy resolution	0.09
b tagging	0.12
Pileup	0.09
tł ME scale	0.18
tW ME scale	0.02
DY ME scale	0.06
NLO generator	0.14
PDF	0.05
$\sigma_{t\bar{t}}$	0.09
Top quark p_T	0.04
ME/PS matching	0.16
UE tune	0.03
tī ISR scale	0.16
tW ISR scale	0.02
tŧ FSR scale	0.07
tW FSR scale	0.02
B -Fragmentation	0.11
B-hadron BF	0.07
Colour reconnection	0.17
DY background	0.24
tW background	0.13
Diboson background	0.02
W+jets background	0.04
tł background	0.02
Statistical	0.14
Total Stat+Syst	$\pm^{0.57}_{0.64}$
MC Statistical	0.36
Total	$\pm_{0.73}^{0.68}$
mMC	172.33

total $t\bar{t}$ cross section $\sigma_{t\bar{t}} = 815 \pm 2 \text{ (stat)} \pm 29 \text{ (syst)} \pm 20 \text{ (l}$

top MC mass $m_{\rm t}^{\rm MC} = 172.33 \pm 0.14\, ({\rm stat}) \pm^{0.66}_{0.72} \, ({\rm syst}) \, {\rm GeV}$

main systematic uncertainties on $\sigma_{
m tar t}$

- integrated luminosity (2.5%)
- lepton identification (2.2%)

main systematic uncertainties on $m_{\rm t}^{\rm MC}$

- jet energy scale (570 MeV)
- statistics of simulation (360 MeV)

extraction of $lpha_{ m S}({ m M_Z})$ from $\sigma_{ m t\bar t}$ at 13 TeV

CMS-PAS-TOP-17-001

parameters determined from data-theory χ^2 using xFitter framework

 $\alpha_{\rm S}$ and $m_{\rm t}$ cannot be determined simultaneously $\Rightarrow m_{\rm t}$ fixed to native value of PDF

uncertainties

- experimental: from $\sigma_{
 m tar t}$ measurement
- PDF: from eigenvectors
- independent μ_r , μ_f variations by factor 2

results

- challenging precision on $\alpha_{\rm S}(M_{\rm Z}),$ most precise from hadronic processes to date
- better precision with ABMP16

 $\alpha_{\rm S}({\rm M_Z}) = 0.1139 \stackrel{+0.0027}{_{-0.0023}}$ (ABMP16)

extraction of $lpha_{ m S}({ m M_Z})$ from $\sigma_{ m t\bar t}$ at 13 TeV

CMS-PAS-TOP-17-001

parameters determined from data-theory χ^2 using xFitter framework

 $\alpha_{\rm S}$ and $m_{\rm t}$ cannot be determined simultaneously $\Rightarrow m_{\rm t}$ fixed to native value of PDF

uncertainties

- experimental: from $\sigma_{t\bar{t}}$ measurement
- PDF: from eigenvectors
- independent μ_r , μ_f variations by factor 2

results

- dependence of extracted α_S vs m_t investigated \rightarrow linear
- somehow flatter in case of ABMP16

extraction of $m_{ m t}(m_{ m t})$ from $\sigma_{ m tar t}$ at 13 TeV

CMS-PAS-TOP-17-001

- same procedure used to extract top mass in $\overline{\mathrm{MS}}$ scheme, $m_{\mathrm{t}}(m_{\mathrm{t}})$
- $\alpha_{
 m S}({
 m M_Z})$ fixed at native values of PDF

results

- first consistent determination of $m_{
 m t}(m_{
 m t})$ (uncertainty $\simeq 1.2\%$)
- lower m_t result with ABMP16 due to lower $\alpha_{\rm S}({\rm M_Z})$ in PDF determination

 $m_{\rm t}(m_{\rm t}) = 161.6 \ ^{+1.6}_{-1.9} \, {\rm GeV} \ ({\rm ABMP16})$

extraction of $m_{ m t}(m_{ m t})$ from $\sigma_{ m tar t}$ at 13 TeV

CMS-PAS-TOP-17-001

- same procedure used to extract top mass in $\overline{\mathrm{MS}}$ scheme, $m_{\mathrm{t}}(m_{\mathrm{t}})$
- $\alpha_{
 m S}({
 m M_Z})$ fixed at native values of PDF

results

- first consistent determination of $m_{
 m t}(m_{
 m t})$ (uncertainty $\simeq 1.2\%$)
- lower m_t result with ABMP16 due to lower $\alpha_{\rm S}({\rm M_Z})$ in PDF determination

 $m_{\rm t}(m_{\rm t}) = 161.6 \stackrel{+1.6}{_{-1.9}} \,{\rm GeV} \,\,({\rm ABMP16})$

pole mass $m_{\rm t}^{\rm pole}$

- missing soft gluon resummation
 ⇒ for illustration purposes only
- results consistent with previous measurements

CMS results at 7 and 8 TeV

- $\sigma_{\rm t\bar{t}}$ measured at fixed mass \Rightarrow dependence on $m_{\rm t}^{\rm MC}$ has to be considered
- assumption: $m_{
 m t}^{
 m MC}=m_{
 m t}^{
 m pole}\pm 1\,{
 m GeV}$

CMS preliminary results at 13 TeV (CMS-PAS-TOP-17-001)

- $\sigma_{
 m t\bar{t}}$ determined at optimal mass point through simultaneous fit with $m_{
 m t}^{
 m MC}$
- uncertainty on $\sigma_{
 m tar t}$ contains contribution from $m_{
 m t}^{
 m MC}$
- top quark mass treated in $\overline{\mathrm{MS}}$ scheme \rightarrow faster perturbative convergence
- first consistent determination of $m_{
 m t}(m_{
 m t})$ with $\simeq 1.2\%$ precision

extra: stability of EW vacuum

Thank you for your attention

 $m_{\rm t}^{\rm pole} = 172.9 \, {}^{+2.4}_{-2.8} \, {\rm GeV} \quad ({\rm CT14})$

 results consistent with previous measurements at Tevatron and LHC

top quark mass in $\overline{\mathbf{MS}}$ scheme

PDF set (NNLO)	$lpha_{ m S}^{ m min}(M_{ m Z})$
ABMP16	0.1139 ± 0.0023 (fit $+$ PDF) $^{+0.0014}_{-0.0001}$ (scale)
NNPDF3.1	0.1140 ± 0.0033 (fit $+$ PDF) $^{+0.0021}_{-0.0002}$ (scale)
CT14	0.1148 ± 0.0032 (fit + PDF) $^{+0.0018}_{-0.0002}$ (scale)
MMHT14	0.1151 ± 0.0035 (fit $+$ PDF) $^{+0.0020}_{-0.0002}$ (scale)

top quark mass in on-shell scheme

PDF set (NNLO)	$\alpha_{\rm S}^{\rm min}(M_{\rm Z})$			
ABMP16	0.1164 ± 0.0021 (fit $+$ PDF) $^{+0.0024}_{-0.0014}$ (scale)			
NNPDF3.1	0.1184 ± 0.0027 (fit $+$ PDF) $^{+0.0037}_{-0.0021}$ (scale)			
CT14	0.1186 ± 0.0028 (fit + PDF) $^{+0.0034}_{-0.0019}$ (scale)			
MMHT14	0.1205 ± 0.0029 (fit $+$ PDF) $^{+0.0037}_{-0.0021}$ (scale)			

top quark $\overline{\mathbf{MS}}$ mass

PDF set (NNLO)	$m_{ m t}(m_{ m t})$ [GeV]
ABMP16	$161.6 \pm 1.6 \text{ (fit + PDF + } \alpha_{ m S} \text{)} ^{+0.1}_{-1.0} \text{ (scale)}$
NNPDF3.1	$164.5 \pm 1.5 \text{ (fit + PDF + } \alpha_{ m S} \text{) } ^{+0.1}_{-1.0} \text{ (scale)}$
CT14	$165.0 \pm 1.7 \; ({ m fit} + { m PDF}) \pm 0.6 \; (lpha_{ m S}) \; {}^{+0.1}_{-1.0} \; ({ m scale})$
MMHT14	$164.9 \pm 1.7 \; ({ m fit} + { m PDF}) \pm 0.5 \; (lpha_{ m S}) \; {}^{+0.1}_{-1.1} \; ({ m scale})$

top quark pole mass

PDF set (NNLO)	$m_{ m t}^{ m pole}$ [GeV]
ABMP16	$169.1 \pm 1.8 \text{ (fit + PDF + } lpha_{ ext{S}} \text{)} ^{+1.3}_{-1.9} \text{ (scale)}$
NNPDF3.1	$172.4 \pm 1.6 \text{ (fit + PDF + } \alpha_{\text{S}} \text{)} ^{+1.3}_{-2.0} \text{ (scale)}$
CT14	$172.9 \pm 1.8 \text{ (fit + PDF)} \pm 0.7 (\alpha_{\text{S}}) \stackrel{+1.4}{_{-2.0}} \text{ (scale)}$
MMHT14	$172.8 \pm 1.7 \text{ (fit + PDF)} \pm 0.6 (\alpha_{\text{S}}) \stackrel{+1.3}{_{-2.0}} \text{ (scale)}$

PDF set (NNLO)	ABMP16	NNPDF3.1	CT14	MMHT14
$m_{ m t}^{ m pole}$	170.37 GeV	172.5 GeV	173.3 GeV	174.2 GeV
RunDec conversion	3 loops	2 loops	2 loops	3 loops
$m_{\rm t}(m_{\rm t})$	160.86 GeV	162.56 GeV	163.30 GeV	163.47 GeV
$\alpha_{\rm S}(m_{\rm Z})$	0.116	0.118	0.118	0.118
$\alpha_{ m S}$ range	0.112-0.120	0.108-0.124	0.111-0.123	0.108-0.128

0 b-tags: 0,1,2,3 additional jets

1 b-tag: 0,1,2,3 additional jets

CMS Pr

∧ 90)31 1500

1000

si pi 1

35.9 fb⁻¹ (13 TeV

+ Data

Signal

Background

Syst+∆m^{MC}

MC Stat

120 140 160 180 2 Additional let p [GeV

2 b-tags: 0,1,2,3 additional jets

Matteo M. Defranchis

Deutsches Elektronen-Synchrotron (DESY)

CMS-PAS-TOP-17-001

35.9 fb⁻¹(13 TeV

+ Data

Signal

Background

Svst+AmMC

MC Stat

120 140 160 1 Additional iet p 1

CMS Preli

ing 1.

parametrization of systematic uncertainties

- templates corresponding to systematic variations are derived by varying parameters in analysis within their prior uncertainty or by using alternative samples
- in each bin, the dependency on the nuisance parameters is modelled with a second order polynomial
- if the variation is one-sided (comparison between two alternative models) a linear dependence is assumed
- nominal, up and down variations correspond to $\lambda_{\rm k}=$ 0, +1 and -1 respectively

procedure to assess impact of MC statistics

general idea: effect of systematics on fit distributions is modelled with templates obtained either

- by re-weighting events (e.g. ME scale)
- with alternative MC samples (e.g. ME/PS matching)
- re-weighting: stats of nominal templates and varied templates are fully correlated
- 2 alternative samples: fully uncorrelated

procedure

- produce toy templates where each bin is Poisson-smeared according to its MC stats
- fully consistent treatment of correlations between statistical uncertainties in the MC
 - throw individual toys for nominal and alternative samples and re-derive template dependencies
- simultaneously for all the nuisance parameters
- repeat fit to data points and assess effect on results (mass, cross section) and nuisances
- estimates the impact of any possible MC fluctuation

