Recent prospects for Supersymmetry searches at the High Luminosity LHC

Federico Meloni (DESY) DESY LHC discussion, 19/11/2018

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Introduction

At the LHC turn-on, many hoped that SUSY would be just around the corner.

• However, the search continues...

ESPP update due for approval by CERN council in May 2020

- Large effort to quantify the reach of the HL-LHC
- Yellow Report expected in December 2018

But where is SUSY?

Barbieri-Giudice 3% naturalness
 m(g) ≤ 1000 GeV

Probing a guiding principle

- $m(\tilde{t}_1) \lesssim 500 \text{ GeV}$
- LHC limits severly constraining these models

Is SUSY unnatural? Is it dead? Not really...

- Considering the electroweak fine-tuning (Δ_{EW}) , SUSY is natural (**3-10%**) with: $m(\tilde{g}) \lesssim 5-6 \text{ TeV}$ $m(\tilde{t_1}) \lesssim 2-3 \text{ TeV}$ $m(\tilde{q}) \lesssim 10-20 \text{ TeV}$
- Need low μ ~ 100-300 GeV

H. Baer, FNAL HL/HE-LHC workshop

Naturalness at the HL-LHC

What do we expect to be able to say?

The HL-LHC Yellow Report studies

Some commonalities

Three main approaches:

- Full simulation
- Analysis with parameterized detector performance (e.g. DELPHES with up-to-date phase-2 detector performance)
- Projections using Run-2 signal and background samples scaled at 14 TeV

Harmonised treatment of detector and theory uncertainties evolution with time

- Agreement between experimental collaborations and theorists involved in the Yellow Report
- General "rules of thumb":
 - detector and theory/modelling uncertainties will be halved
 - MC statistics are supposed to be infinite

Search for long lived gluinos

Probing high mass gluinos

Gluinos can acquire discernible lifetimes due to heavy intermediate particles in the decay chain.

• Follow strategy of arXiv: 1710.04901

- Exploit displaced decay vertices
- Sensitivity dependent on detector layout and tracking performance

Search for long lived gluinos

Displaced tracking performance

Standard and displaced tracking reconstruction require that each track have at least seven silicon-detector hits (strip detectors are double-sided).

- Track reconstruction efficiency assumed to be 1
- Silicon detector hit efficiency assumed to be 1

Long lived gluinos expected sensitivity

Same selection of Run-2 (E_T^{miss} > 250 GeV, m_{DV} > 10 GeV, n_{tracks} > 4)

Two hypotheses for backgrounds (scaling with luminosity or the same as Run-2)

Search for top squarks

High-mass region

Fully hadronic final state

- Exploits large-R jets (anti- $k_t^{1.2}$ and anti- $k_t^{0.8}$) masses to tag potential boosted top quarks and *W*-bosons in the final state.
- Multi-bin selection on E_T^{miss} , m(anti- $k_t^{1.2}$) and n_{b-jet}

Search for top squarks

Compressed models

Fully hadronic final state

- Exploits the Recursive Jigsaw technique
- ISR to boost stop-system
- Multi-bin selection on R_{ISR} and E_T^{miss}

 $\tilde{\chi}_1^0$ $\frac{E_{\rm T}^{\rm miss}}{p_{\rm T}^{\rm ISR}} \sim$ т $R_{\rm ISR} =$ $m(\tilde{t}_1$

Top squarks expected sensitivity

Very compressed electroweak-inos

Di-lepton final state

- ISR to boost C1N2-system
- Challenging lepton identification
- Multi-bin selection on dilepton invariant mass (m_{II})

DESY. | LHC Physics Discussion: SUSY | Federico Meloni, 19/11/2018

Ultra compressed electroweak-inos

In very compressed spectra, charginos can acquire sizeable lifetime

- Exploit the disappearing track signature
- Challenging tracking environment!

Tracklet requirements

Pixel detector-only tracklets reconstructed with 4-5 hits

- p_T > 150 GeV
- ISR jet p_T > 300 GeV

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\$ } \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\

} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\

} \\
\left(\end{array} \\
 \\
\left(\end{array} \\
 \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

}

DESY. | LHC Physics Discussion: SUSY | Federico Meloni, 19/11/2018

Page 15

10⁵ Total background ATLAS Simulation Preliminary tŦ \sqrt{s} =14 TeV, L = 3000 fb⁻¹, µ=200 10⁴ 11111 V+jets Fake tracklets 10³ $m(\tilde{\chi}_{\star}^{\pm}) = 100 \text{ GeV}, \tau = 20 \text{ ps}$ $m(\tilde{\chi}_{1}^{\pm}) = 800 \text{ GeV}, \tau = 1000 \text{ ps}^{-1}$ 10² 10 10⁻¹ 10⁻² 300 700 800 900 1000 400 500 600 100 200 E_T^{miss} [GeV]

• E_T^{miss} > 300 GeV

Events / 100 GeV

Disappearing tracks

Search for Higgsinos

Higgsinos expected sensitivity

The HL-LHC and beyond

Image credit: M. D'Onofrio

DESY. | LHC Physics Discussion: SUSY | Federico Meloni, 19/11/2018

Summary

The reach of simplified natural SUSY searches at the HL-LHC has been explored.

- A comprehensive programme spanning from strong to electroweakly produced sparticles
- Worth to look into unconventional corners (e.g. long-lived SUSY)

Overall large effort to prepare updated prospects for the update of the European Strategy for Particle Physics.

• Many additional interesting prospects to be released in just a few days!

Stay tuned!

Thank you

Top squark SR definitions

High mass

Preselection			
$N_{\rm lep} = 0$			
$N_{\rm jet} \ge 4$			
$\Delta \phi \left(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet1} \right) > 0.4, \Delta \phi \left(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet2} \right) > 0.4$			
$N_{b-\mathrm{jet}} \ge 1$			
$E_{\rm T}^{\rm miss}$ > 400 GeV			
$p_{\rm T}^{\rm jet1} > 80 \; {\rm GeV}, p_{\rm T}^{\rm jet2} > 80 \; {\rm GeV}$			
$p_{\rm T}^{\rm jet3} > 40 \; {\rm GeV}, p_{\rm T}^{\rm jet4} > 40 \; {\rm GeV}$			
$m_1^{\text{anti-}k_t^{1.2}} > 120 \text{ GeV}$			
$m_{\rm Tb}^{\rm min} > 250 {\rm ~GeV}$			
$m_1^{\text{anti-}k_t^{0.8}} > 60 \text{ GeV}, m_2^{\text{anti-}k_t^{0.8}} > 60 \text{ GeV}$			
Signal region selection			
Number of <i>b</i> -tagged jets	Other selections		
$N_{b-\text{jet}} = 1$	$m_2^{\text{anti-}k_t^{1,2}} \in [0, 60), [60, 120), [120, \infty)$		
	$E_{\mathrm{T}}^{\mathrm{miss}} \in [400, 600), [600, 900), [900, 1200), [1200, 1600), [1600, \infty)$		
	$m_2^{\text{anti-}k_t^{1,2}} \in [0, 60), [60, 120), [120, \infty)$		
$N_{b-\text{jet}} > 1$	$E_{\rm T}^{\rm miss} \in [400, 600), [600, 900), [900, 1200), [1200, 1600), [1600, \infty)$		
	$m_{\rm T}^{\chi^2} > 400, \Delta R_{bb} \ge 1$		

Top squark SR definitions

Compressed

Preselection			
$N_{\text{lep}} = 0$			
$N_{\text{jet}} \ge 4$			
$\Delta\phi\left(E_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jet1} ight) > 0.4, \Delta\phi\left(E_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jet2} ight) > 0.4$			
$N_{b-\text{jet}} \ge 1$			
$E_{\rm T}^{\rm miss}$ > 400 GeV			
$p_{\rm T}^{\rm jet1} > 80 \text{ GeV}, p_{\rm T}^{\rm jet2} > 80 \text{ GeV}$			
$p_{\rm T}^{\rm jet3} > 40 \text{ GeV}, p_{\rm T}^{\rm jet4} > 40 \text{ GeV}$			
$N_{b-\text{iet}}^{\text{S}} \ge 1$			
	$N_{\text{iet}}^{S'} \ge 5$		
$p_{T,b}^{0,S} > 40 \text{ GeV}$			
$m_{\rm S}^{3} > 300 {\rm GeV}$			
$\Delta \phi(\text{ISR}, \mathbf{p}_{\text{T}}^{\text{miss}}) > 3$			
$p_{\rm T}^{\rm ISR} > 400 { m ~GeV}$			
$p_{\rm T}^{4,\rm S} > 50 \; {\rm GeV}$			
Signal region selection			
$R_{\rm ISR}$ selection	$E_{\rm T}^{\rm miss}$ selection		
$0.5 < R_{\rm ISR} < 0.65$	$E_{\rm T}^{\rm miss} \in [500, 700), [700, 1000), [1000, 1400), [1400, \infty)$		
$R_{\rm ISR} > 0.65$	$E_{\rm T}^{\rm miss} \in [500, 700), [700, 1000), [1000, 1400), [1400, \infty)$		

Soft leptons SR

Variable	SR Selection ($m_{\ell\ell} < 20 \text{GeV}$)	SR Selection ($m_{\ell\ell} > 20 \text{GeV}$)
n_{μ}	= 2	= 2
$p_{\rm T}(\mu_{1,2})$ [GeV]	> 3	> 8
n _{jets}	≥ 1	≥ 1
n _{b-jets}	= 0	= 0
$E_{\rm T}^{\rm miss}$ [GeV]	> 500	> 500
$\Delta \hat{R}(\ell,\ell)$	< 2	< 2
$m_{\ell\ell}$ [GeV]	[1, 20] excluding [3.0, 3.2]	[20, 50]
$p_{\rm T}({\rm jet}_1)$ [GeV]	> 100	> 100
$\Delta \phi(j_1, E_{ m T}^{ m miss})$	> 2	> 2
$\min(\Delta \phi(j, E_{\rm T}^{\rm miss}))$	> 0.4	> 0.4
$m_{\tau\tau}$ [GeV]	< 0 or > 160	< 0 or > 160
$E_{\mathrm{T}}^{\mathrm{miss}}/H_{\mathrm{T}}^{\mathrm{lep}}$	$> \max(5, 15 - 2m_{\ell\ell})$	$> \max(10, 15 - 2m_{\ell\ell})$

Disappearing tracks SR

Variable	SR Selection
Lepton veto $p_{\rm T}$ [GeV]	>20
$\min\{\Delta\phi(\text{jet}_{1-4}, E_{\text{T}}^{\text{miss}})\}$	> 1
$E_{\rm T}^{\rm miss}$ [GeV]	> 300
Leading jet $p_{\rm T}$ [GeV]	> 300
Leading tracklet $p_{\rm T}$ [GeV]	> 150
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},\mathrm{trk})$	< 0.5

Prompt squark and gluinos

ATL-PHYS-PUB-2014-010

Bottom squarks

ATL-PHYS-PUB-2014-010

Compressed stops. (di-lepton)

ATL-PHYS-PUB-2016-022

Electroweakinos (multi-leptons)

ATL-PHYS-PUB-2014-010

Electroweakinos (via Higgs)

Stau pairs

