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Vacuum Stability

The EW vacuum is a local minimum of the scalar potential. The
universe has been in that state at least since BBN (so for ∼ TH).
> if it is the global minimum ⇒ absolute stability
> if there are deeper minima

→ lifetime of the EW vacuum > TH ⇒ long-lived metastability
→ lifetime of the EW vacuum < TH ⇒ short-lived instability

Both absolute and metastability are fine with observations, but a
short-lived EW vacuum is not.

This can be used to constrain particle physics models.
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High Scale Vacuum Stability in the SM
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Figure 3: Evolution of the Higgs coupling �(µ) and its beta function, eq. (50), as a function of the
renormalization scale, compared to the evolution of the e↵ective coupling �e↵(h), defined in eq. (51),
as a function of the field value. Left: curves plotted for the best-fit value of Mt. Right: curves
plotted for the lower value of Mt that corresponds to �(MPl) = 0.

The factor

�(h) ⌘
Z h

Mt

�(µ) d lnµ , (54)

where � ⌘ d lnh/d lnµ is the Higgs field anomalous dimension, takes into account the wave-

function renormalization. We have also defined rp ⌘ ln[pe2�(h)].

The di↵erence �e↵(h) � �(h) is positive, as illustrated in fig. 3. As a result [9], at a

given field value the potential is more stable than what guessed from the naive expectation

based on the RG-improved tree-level potential in eq. (49), with µ = h. We finally notice

that the di↵erence �e↵(h) � �(h) gets suppressed at large field values, especially when �

reaches its minimum close to the Planck scale. This is expected according to the following

two observations: 1) the di↵erence between �e↵ and � can be reabsorbed by a shift in the

scales at which the two couplings are evaluated, up to finite two-loop corrections; 2) this

shift has a small impact at large field values given the corresponding vanishing of �� (see

fig. 3).

14

[Degrassi et.al.; 1205.6497]

> When extrapolating the SM to
very high energies the quartic
coupling λ turns negative.

⇒ A deeper minimum develops
at very high field values.
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High Scale Vacuum Stability in the SM

> Sensitive to the values of mt
and mh

βλ ≈ 12λ2 + 6y2
t λ− 3y4

t

> Current central values in a
region of metastability

Pdecayed =
Γ

V (VT )lc

= 10
−516−409

+202

[Chigusa, Moroi, Shoji; 1803.03902] [Andreassen, Frost, Schwartz; 1707.08124]
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High Scale Vacuum Stability in the SM

The stability of the EW vacuum in the SM is in
agreement with observations.
Ignoring:
> New physics below the Planck scale?
> Impact of Planck suppressed operators?
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EW Scale Vacuum Stability

Additional scalar degrees of freedom can lead to vacuum
stability constraints already at the EW scale.

> insensitive to high scale physics
> less sensitive to higher order effects

The most general renormalizable scalar potential at tree-level is

V (φa) = λabcdφaφbφcφd + Aabcφaφbφc + m2
abφaφb + taφa + c

for a, b, c, d ∈ {1, . . . ,N} for N real scalar degrees of freedom.
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Directions in Fieldspace

V (φa) = λabcdφaφbφcφd + Aabcφaφbφc + m2
abφaφb + taφa + c

Expand around EW vacuum ~φ → ~v + ~ϕ:

V (ϕa) = λ(~v)abcdϕaϕbϕcϕd + A(~v)abcϕaϕbϕc + m2(~v)abϕaϕb

Introduce polar coordinates ~ϕ → ϕϕ̂:

V (ϕ) = λ(ϕ̂)ϕ4 − A(ϕ̂)ϕ3 + m2(ϕ̂)ϕ2

> λ > 0 for physical potentials (bounded from below)
> A > 0 by choice (ϕ ↔ −ϕ)
> m2 > 0 if the EW-vacuum is a local minimum
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Stability of Fieldspace Directions

arb. unit

ar
b.
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ni

t A2 < 32/9 m2

A2 = 32/9 m2

A2 = 4 m2

A2 > 4 m2

> at most one additional minimum for each ϕ̂

> the additional minimum is deeper if A(ϕ̂)2 > 4m2(ϕ̂)λ(ϕ̂)

We use polynomial homotopy continuation to find all stationary
points and identify deep minima from there.
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Lifetime and Vacuum Decay

The vacuum tunneling decay width is given by

Γ

V = Ke−B

The bounce action B The prefactor K ∼ M4

> analytic solution in straight
path approximation
[Adams; hep-ph/9302321]

> associated uncertainty of
O(10%)
[Masoumi, Olum, Wachter; 1702.00356]
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⇔ B ∈ [390, 440] ∼ 10%
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The Scalar Sector of the MSSM

In SUSY theories every SM fermion gains a scalar superpartner.
In the MSSM the scalar potential including only the real, neutral
Higgs and real t̃r , t̃l fields reads
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Tree-level — the 1-loop effective potential has numerical and
theoretical issues.
[Andreassen, Farhi, Frost, Schwartz; 1604.06090]
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Vacuum Stability of the M125
h (τ̃ ) Scenario
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� stable, EW vacuum is the
global minimum

� long-lived
� 390 < B < 440

� short-lived

[Bahl, et.al.; 1808.07542]

Xt = At −
µ

tanβ = 2.8TeV , Ab = At , µ = 1TeV ,

mQ3,U3,D3
= 1.5TeV , mL3,E3 = 350GeV , Aτ = 800GeV
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The Vacuum Structure
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> fastest tunnelling in τ̃ directions
> fastest tunneling in general not in the direction of the global

minimum
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Complementarity to Experimental Constraints
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> Vacuum stability constraints important at large tanβ
> complementary to BR(h → γγ)

J. Wittbrodt | LHC Physics Discussion: SUSY | 19.11.2018 | Page 14



The M125
h (alignment) Scenario

alignment without
decoupling
> tree-level and 1-loop cancel

→ SM-like h
> excluded at large tanβ

from H → ττ

> at small tanβ requires
At , µ � mt̃

At = Ab = Aτ = 6.25TeV , µ = 7.5TeV ,

mQ3,U3,D3
= 2.5TeV , mL3,E3 = 2TeV
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The M125
h (alignment) Scenario
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Vacuum Stability and Alignment Without
Decoupling
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require, e.g.

A →∼ 5TeV µ →∼ 4TeV

> this reduces BR(h → γγ) by
∼ 10%

The alignment without decoupling regime is strongly constrained
by combining experimental searches with constraints from vacuum
stability.
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Vacuum Stability Constraints from the
Literature
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> analytical/empirical
constraints for absolute
stability and metastability
[Kusenko et.al.; hep-ph/9602414]

A2
t+3µ2 < (m2

t̃R
+m2

t̃L
)·

{
3

7.5

> heuristic estimate
A/m, µ/m . 3

Analytic and empirical bounds provide only very rough estimates of
the vacuum stability constraints.
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Comparison with Vevacious

[Camargo-Molina, O’Leary, Porod, Staub; 1307.1477]
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> good agreement in this plane, differences due to τ̃ -vevs not
included in our Vevacious run

> our code is considerably faster (∼ 5×) and more reliable
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Summary

Vacuum stability provides important constraints on the parameter
space of models with large scalar sectors and can provide
complementary constraints to experimental searches.
> Vacuum stability constraints can help catch theorists as they

push their models into corners of parameter space.
> Vacuum stability constraints on model parameter space are not

very sensitivy to uncertainties in B.
> The most dangerous minimum for tunneling is not in general

the global minimum of the theory.
We aim to provide efficient and reliable bounds from vacuum
stability in any renormalizable model.

Upcoming paper [Hollik, Weiglein, JW; 1811.?????].
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Considered Field Sets

We look for stationary points using these three sets of fields:{
Re(h0

u), Re(h0
d), Re(t̃L), Re(t̃R), Re(b̃L), Re(b̃R)

}
{

Re(h0
u), Re(h0

d), Re(t̃L), Re(t̃R), Re(τ̃L), Re(τ̃R)
}

{
Re(h0

u), Re(h0
d), Re(b̃L), Re(b̃R), Re(τ̃L), Re(τ̃R)

}
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Detailed Comparison with Vevacious
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Finding Deep Directions in Fieldspace

1 Solve ~∇φV = 0 to find all stationary points using polynomial
homotopy continuation (PHC).

2 Compare the potential values at each stationary point to the
value at the EW vacuum.

3 Get λ(ϕ̂), A(ϕ̂) and m2(ϕ̂) for ϕ̂ pointing towards each deeper
stationary point.

PHC in theory always finds all solutions. In practice it requires the
system to be well conditioned to reduce coefficient variability.
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Perturbative Expansion of the Bounce

V (φ) = λφ4 with λ < 0

Analytic bounce solution

φc(ρ) =

√
− 2

λ

R
R2 + ρ2

⇒ B = −2π

3λ

The 1-loop effective action up to two derivatives is

Seff = λφ4︸︷︷︸
LO

+
9λ2

4π2
φ2

(
ln 12λφ2

µ2
− 3

2

)
︸ ︷︷ ︸

1L eff. potential

+
(∂µφ)

2

2

(
1 +

λ

4π2

)
︸ ︷︷ ︸

1L p2

+O(∂4)︸ ︷︷ ︸
1L p4

Leading to

B = −2π

3λ
+ 3 ln Rµ

2
√
6
+

19

4
+

1

3
+O(1)

[Andreassen, Farhi, Frost, Schwartz; 1604.06090]
J. Wittbrodt | LHC Physics Discussion: SUSY | 19.11.2018 | Page 23


	High Scale Vacuum Stability
	The SM

	EW Scale Vacuum Stability
	Method
	Contraints on MSSM Benchmark Scenarios

	Appendix

