Performance of b-jet identification in ATLAS.

HEP Student Seminars

Matthias Saimpert

DESY (Hamburg)

21 Fev 2018

Disclaimer: biased choices in the topics

- I recall some jet physics basics and define some kinematics required to understand the content of the talk
- I spend a bit of time to describe the idea of the most basic identification algorithms and on which detector measurements they rely on
- I spend a bit of time to give a rough idea on how we cross check / calibrate the algorithm performance with real collision data
- I do not explain the latest algorithm developments and most fancy techniques
- I do not cover c- and au lepton (to hadrons)-tagging
- I do not address the issue of *b*-tagging at very high $p_{
 m T}^{
 m jet}$
 - (i.e. beyond the $t\overline{t}$ kinematic reach)

if you need more info: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FlavourTaggingPublicResultsCollisionData

Why b-jet identification so important for ATLAS?

 Identifying the jets originating from the hadronization of a *b*-quark (*b*-tagging) is essential to many ATLAS physics analysis:

Top Physics / New Phenomena

 \rightarrow top precision cross section measurement \rightarrow high mass stop SUSY searches

Higgs Physics

- ightarrow observation of $bar{b}$ decay mode
- \rightarrow direct measurement of top-Higgs couplings (ttH production)

What's a hadronic jet?

- Perturbative QCD, very small timescales \rightarrow coloured final state objects
- Partons can be grouped together via a clustering algorithm
 - \rightarrow definition of "parton-level" jets

What's a hadronic jet?

- Perturbative QCD, very small timescales \rightarrow coloured final state objects
- Partons can be grouped together via a clustering algorithm
 - \rightarrow definition of "parton-level" jets
- Encapsulation in hadrons due to QCD color confinement
 - \rightarrow hadronization (non-perturbative)
 - \rightarrow other non-perturbative effects
 - \rightarrow definition of "particle-level" jets

What's a hadronic jet?

- Perturbative QCD, very small timescales \rightarrow coloured final state objects
- Partons can be grouped together via a clustering algorithm
 - \rightarrow definition of "parton-level" jets
- Encapsulation in hadrons due to QCD color confinement
 - \rightarrow hadronization (non-perturbative)
 - \rightarrow other non-perturbative effects
 - \rightarrow definition of "particle-level" jets
- Hadrons cannot be reconstructed individually in the detector \rightarrow experimentally, clustering based on calorimeter energy deposits

What's a hadronic b-jet?

For theorists:

- fixed-order QCD computation: no jets, only limited number of partons
- 2 + parton shower: parton-level jet with *b*-quark as highest p_T parton with p_T > X GeV
- 3 + hadronisation: particle-level jet including at least one b-hadron

What's a hadronic b-jet?

For theorists:

fixed-order QCD computation: no jets, only limited number of partons

2 + parton shower: parton-level jet with *b*-quark as highest p_T parton with p_T > X GeV

3 + hadronisation: particle-level jet including at least one b-hadron

For experimentalists:

- 1 long-lifetime of b-hadrons: V_{cb} small \rightarrow decay length \sim 450 μ m
- 2 large mass of b-hadrons: few GeV
 - \rightarrow presence of displaced tracks
 - ightarrow presence of secondary vertices
 - $(B \xrightarrow{\cdot} C \rightarrow light)$
 - ightarrow peculiar topology

(more and higher energy tracks, etc)

What's a hadronic b-jet?

For theorists:

- fixed-order QCD computation: no jets, only limited number of partons
- 2 + parton shower: parton-level jet with *b*-quark as highest p_T parton with p_T > X GeV
- 3 + hadronisation: particle-level jet including at least one b-hadron

in ATLAS, "true" b-jet in simulation: calorimeter-level jet with at least one b-hadron $(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2})$

Experimental identification of b-jets rely strongly on detector tracking performance

For experimentalists:

- 1 long-lifetime of b-hadrons: V_{cb} small \rightarrow decay length \sim 450 μ m
- 2 large mass of b-hadrons: few GeV
 - \rightarrow presence of displaced tracks
 - \rightarrow presence of secondary vertices
 - $(B \xrightarrow{\cdot} C \rightarrow light)$
 - ightarrow peculiar topology

(more and higher energy tracks, etc)

Impact parameter-based algorithm: $IP2D/IP3D \rightarrow used at LEP$

- d₀: "distance of closest approach between the track and the primary vertex (PV) in the transverse plane"
- z₀: "distance in longitudinal direction between the PV and point of closest approach"

Impact parameter-based algorithm: $IP2D/IP3D \rightarrow used at LEP$

- d₀: "distance of closest approach between the track and the primary vertex (PV) in the transverse plane"
- z₀: "distance in longitudinal direction between the PV and point of closest approach"
- sign defined w.r.t location of crossing point btw track and jet axis

Impact parameter-based algorithm: $IP2D/IP3D \rightarrow used at LEP$

- d₀: "distance of closest approach between the track and the primary vertex (PV) in the transverse plane"
- z₀: "distance in longitudinal direction between the PV and point of closest approach"
- sign defined w.r.t location of crossing point btw track and jet axis
- large positive tails for b and c-jets
 → likelihoods built from tracks
 associated to the jet, based on b, c
 and light-jet IP templates

Impact parameter-based algorithm: $IP2D/IP3D \rightarrow used at LEP$

- d₀: "distance of closest approach between the track and the primary vertex (PV) in the transverse plane"
- z₀: "distance in longitudinal direction between the PV and point of closest approach"
- sign defined w.r.t location of crossing point btw track and jet axis
- large positive tails for b and c-jets
 → likelihoods built from tracks
 associated to the jet, based on b, c
 and light-jet IP templates

IP2D \rightarrow d₀ templates (x,y)

Matthias Saimpert — DESY (Hamburg) — 21 Fev 2018 — Page 7/16

IP2D/IP3D discriminants

 $log(P_b/P_u)$ log-likelihood discriminant for IP2D (left) and IP3D (right)

 $\rightarrow \log(P_c/P_u)$ and $\log(P_b/P_c)$ also defined

Inclusive secondary vertex reconstruction: SV1

 All track pairs within a jet are tested for a two-track vertex hypothesis, final fit includes all tracks from 2-trk vertices
 → 1 (or 0) "inclusive" vertex reco per jet

Inclusive secondary vertex reconstruction: SV1

- All track pairs within a jet are tested for a two-track vertex hypothesis, final fit includes all tracks from 2-trk vertices
 → 1 (or 0) "inclusive" vertex reco per jet
- Much more secondary vertex (SV) reconstructed in b and c-jets due to long lifetime of b/c-hadrons

Inclusive secondary vertex reconstruction: SV1

- All track pairs within a jet are tested for a two-track vertex hypothesis, final fit includes all tracks from 2-trk vertices
 → 1 (or 0) "inclusive" vertex reco per jet
- Much more secondary vertex (SV) reconstructed in b and c-jets due to long lifetime of b/c-hadrons
- Rate for b drops as a function of p_T^{jet} (all tracks get parralel to each other)
- Rate for light increases as a function of p_T^{jet} (more tracks, more material interactions)

Inclusive secondary vertex reconstruction: SV1

- All track pairs within a jet are tested for a two-track vertex hypothesis, final fit includes all tracks from 2-trk vertices
 → 1 (or 0) "inclusive" vertex reco per jet
- Much more secondary vertex (SV) reconstructed in b and c-jets due to long lifetime of b/c-hadrons
- Rate for b drops as a function of p_T^{jet} (all tracks get parralel to each other)
- Rate for light increases as a function of p_T^{jet} (more tracks, more material interactions)
- 8 SV properties are used as discriminants

Decay chain multi-vertex reconstruction: JetFitter \rightarrow **ATLAS specificity**

- J. Phys. Conf. Ser. 119 (2008) 03203
- exploits the topological structure of weak band c-hadron decays to reconstruct the full b-hadron decay chain

8 quantities reconstructed by JetFitter are used as discriminants

Matthias Saimpert — DESY (Hamburg) — 21 Fev 2018 — Page 10/16

 $p_{\rm T}^{\rm jet}$ + $\eta^{\rm jet}$ + 3 (IP2D/IP3D) + 8 (SV1) + 8 (JF) variables used as input to a boosted decision tree: MV2 (multi-variate discriminant)

- Algorithm learns how to identify *b*-jets, trained on $t\bar{t}$ simulated MC sample
- Provide a weight within [-1,1] telling you how likely the jet to be a *b*-jets
- Performance quantified in ROC curve: signal efficiency vs background rejection
- MV2 is the main tagger used by ATLAS

Matthias Saimpert — DESY (Hamburg) — 21 Fev 2018 — Page 11/16

Quantification and calibration of *b*-tagging performance

- Tagger working points (WP) defined as a certain cut on the BDT output
 - \rightarrow select a certain point on the ROC curves
- "fixed-cut working points"
 → constant cut value on the BDT output
- WP name gives b-efficiency observed in a $t\bar{t}$ simulated sample, ex: 85% WP

Quantification and calibration of *b*-tagging performance

- Tagger working points (WP) defined as a certain cut on the BDT output
 - \rightarrow select a certain point on the ROC curves
- "fixed-cut working points"
 → constant cut value on the BDT output
- WP name gives b-efficiency observed in a $t\bar{t}$ simulated sample, ex: 85% WP

- Strong reasons to believe simulation is not perfect
 - for signal (i.e. true b-jets): theory modeling effects. Uncertainty in b-fragmentation function, underlying event (non-perturbative), ..., also pileup
 - for background (i.e. non-b jets): detector effects. Non-perfect tracker geometry, dead pixels, fake tracks from random hits, material interactions, ..., also pileup

Quantification and calibration of *b*-tagging performance

- Tagger working points (WP) defined as a certain cut on the BDT output
 - \rightarrow select a certain point on the ROC curves
- "fixed-cut working points"
 → constant cut value on the BDT output
- WP name gives b-efficiency observed in a $t\bar{t}$ simulated sample, ex: 85% WP

- Strong reasons to believe simulation is not perfect
 - for signal (i.e. true b-jets): theory modeling effects. Uncertainty in b-fragmentation function, underlying event (non-perturbative), ..., also pileup
 - for background (i.e. non-b jets): detector effects. Non-perfect tracker geometry, dead pixels, fake tracks from random hits, material interactions, ..., also pileup

b-tagging efficiency measurements for b-jets (signal efficiency)

sample of true *b*-jets before any tagging needed

b-tagging efficiency measurements for b-jets (signal efficiency)

- sample of true *b*-jets before any tagging needed
- use of $t\bar{t}$ fully leptonic decays, i.e. $t \rightarrow bW(\rightarrow l\nu)$
- use of opposite sign $e\mu$ + jets channel, $Z(\rightarrow II)$ + jets background reduced
- exactly 2 jets required to limit combinatorics to bb, bl, lb, ll

b-tagging efficiency measurements for b-jets (signal efficiency)

- sample of true *b*-jets before any tagging needed
- use of $t\bar{t}$ fully leptonic decays, i.e. $t \rightarrow bW(\rightarrow l\nu)$
- use of opposite sign $e\mu$ + jets channel, $Z(\rightarrow II)$ + jets background reduced
- exactly 2 jets required to limit combinatorics to bb, bl, lb, ll
- flavour fractions and light mistag rate taken from simulation, b-efficiency fitted from data (likelihood)
- uncertainty \sim few %, *b*-jet kinematic range limited by top mass

b-tagging efficiency measurements for c-jets (fake rate)

- no public plots released yet at $\sqrt{s} = 13$ TeV but will be very soon!
- 1 lepton + 4 jets (including 2 b-tagged jets)
- likelihood fit of the c-mistag rate. Much higher background than for b-calibration
- results depend significantly on b and light calibration precision

b-tagging efficiency measurements for light-jets (fake rate)

- sample of true light-jet before and after any tagging needed
- not achievable by regular di-jet selection: \sim 2% (5%) b-(c-)jet bef tag ... x10 after.

b-tagging efficiency measurements for light-jets (fake rate)

- sample of true light-jet before and after any tagging needed
- not achievable by regular di-jet selection: \sim 2% (5%) b-(c-)jet bef tag ... x10 after.
- use of a "flipped" tagger to calibrate fakes originating from track resolution effects

b-tagging efficiency measurements for light-jets (fake rate)

- sample of true light-jet before and after any tagging needed
- not achievable by regular di-jet selection: \sim 2% (5%) b-(c-)jet bef tag ... x10 after.
- use of a "flipped" tagger to calibrate fakes originating from track resolution effects
- tag jets with negative attributes
 → similar mistag rate for light (resolution function symmetric)
 → much lower rate for b and c
 - \rightarrow obtention of a purer sample after tag

b-tagging efficiency measurements for light-jets (fake rate)

- sample of true light-jet before and after any tagging needed
- not achievable by regular di-jet selection: $\sim 2\%~(5\%)$ b-(c-)jet bef tag ... x10 after.
- use of a "flipped" tagger to calibrate fakes originating from track resolution effects
- tag jets with negative attributes
 → similar mistag rate for light (resolution function symmetric)
 → much lower rate for b and c
 - \rightarrow obtention of a purer sample after tag
- high uncertainties (\sim 10-40%) related to limited flipped tagger performance

- b-tagging is an essential tool for many key measurements of ATLAS and CMS

- b-tagging is an essential tool for many key measurements of ATLAS and CMS
- in ATLAS, the flavour tagging group is one of the group at the forefront for machine learning based algorithm development
 - very high background from light-jets
 - strong dependence of the fake rate versus $p_{\rm T}^{\rm jet}$.
 - $\hfill many measurements from tracking \rightarrow high gain from multivariate approach$

- b-tagging is an essential tool for many key measurements of ATLAS and CMS
- in ATLAS, the flavour tagging group is one of the group at the forefront for machine learning based algorithm development
 - very high background from light-jets
 - strong dependence of the fake rate versus p_T^{jet}.
 - $\hfill many measurements from tracking \rightarrow high gain from multivariate approach$
- in ATLAS, the flavour tagging group is the only group calibrating centrally the fake rates
 - complexity of the identification algorithm and tracking geometry
 - high dependence of the background w.r.t $p_{\mathrm{T}}^{\mathrm{jet}}$
 - very challenging for tight working points due to the very high rejection rates

- b-tagging is an essential tool for many key measurements of ATLAS and CMS
- in ATLAS, the flavour tagging group is one of the group at the forefront for machine learning based algorithm development
 - very high background from light-jets
 - strong dependence of the fake rate versus p_T^{jet}.
 - $\hfill many measurements from tracking \rightarrow high gain from multivariate approach$
- in ATLAS, the flavour tagging group is the only group calibrating centrally the fake rates
 - complexity of the identification algorithm and tracking geometry
 - high dependence of the background w.r.t $p_{\mathrm{T}}^{\mathrm{jet}}$
 - very challenging for tight working points due to the very high rejection rates
- Examples of challenges for b-tagging at the LHC (not developed here)
 - b-tagging beyond the $t\bar{t}$ kinematic reach: algorithm & calibration
 - calibration of fake rates for very tight working points

Performance of b-jet identification in ATLAS.

Back-up slides

Matthias Saimpert

DESY (Hamburg)

21 Fev 2018

