< ∃ >

DESY, 03/12/18

Constraining Extended Higgs Sectors at the LHC and beyond

Tania Robens based on work with

G.M. Pruna (PRD 88 (2013) 115012), D. Lopez-Val (PRD 90 (2014) 114018), T. Stefaniak (EPJC 75 (2015) 3,105, Eur.Phys.J. C76 (2016) no.5, 268), F. Bojarski, G. Chalons, D. Lopez-Val (JHEP 1602 (2016) 147), A. Ilnicka, M. Krawczyk (Phys.Rev. D93 (2016) no.5, 055026), A. Ilnicka, T. Stefaniak (arXiv:1803.03594)

MTA-DE Particle Physics Research Group, University of Debrecen

DESY

DESY Theory Seminar

03/12/2018Higgs extended

Tania Robens

Inert Doublet Model

Appendix

Introduction and motivation: Higgs discovery and the Nobel Prize

As you all know, **extraordinary success** of particle physics in recent years

\Rightarrow Discovery of "a" Higgs boson \Leftarrow

(by ATLAS and CMS, Phys.Lett. B716 (2012))

... leading to the Nobel Prize for Higgs/ Englert

\Rightarrow !! Particle physics is more exciting than ever !! \Leftarrow =

Tania Robens

Higgs extended

DESY, 03/12/18

1 Introduction and Motivation

2 Singlet

- Parameter space including bounds
- m_W at NLO
- LHC
- Renormalization
- Summary

3 Inert Doublet Model

Tania Robens

Appendix

The Standard Model (SM) of particle physics

The Standard Model of particle physics: a brief introduction

- SM of particle physics: describes known particle content of the universe
- quarks/ leptons: fundamental constituents of matter

[quarks: building blocks of hadrons]

- forces which act on them, coming with gauge bosons
- properties/ quantum numbers: mass, spin, charges under gauge groups

+ Higgs, $m_H~\sim~125\,{
m GeV}$

Singlet

Inert Doublet Model

Appendix

Question: Is this all there is ??

SM Langrangian

[quantumdiaries.org]

with a SM Higgs

[particlezoo.net]

イロト 不得 トイヨト イヨト

DESY, 03/12/18

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

DESY, 03/12/18

After Higgs discovery: Open questions

Higgs discovery in 2012 \Rightarrow last building block discovered

? Any remaining questions ?

- Why is the SM the way it is ??
 - \Rightarrow search for underlying principles/ symmetries
- find explanations for observations not described by the SM
 - \Rightarrow e.g. dark matter, flavour structure, ...
- ad hoc approach: Test which other models still comply with experimental and theoretical precision

for all: Search for Physics beyond the SM (BSM)

 \Longrightarrow main test ground for this: particle colliders \Longleftarrow

Singlet

Inert Doublet Model

Appendix

Current major focus: Physics at the LHC

[cern.ch]

first run: 2009-2014, 7/8 TeV cm energy second run: start in 2015, 13/ 14 TeV cm energy

Tania Robens

Higgs extended

Inert Doublet Model

通 とう きょう うちょう しょう

DESY. 03/12/18

Appendix

Theorists tasks in the LHC era

\implies Tasks at LHC \Leftarrow

- ⇒ (re)discovery of the Standard Model of particle physics, especially Higgs
- ⇒ precision measurements of SM particles
- \Rightarrow discovery/ limit setting on BSM physics

 \implies Tasks for theorists \Leftarrow

- ⇒ accurate predictions for SM processes
- ⇒ rendering ideas/ insight where and how to look for new physics

Tania Robens

A first example of Higgs sector extension: Electroweak singlet

(in other words: what else can be out there...)

a crack in the SM

[quantumdiaries.org]

Tania Robens

Higgs extended

・ロト ・ (日) ・ (目) ・ (目) ・ 目) の (C DESY, 03/12/18

Singlet extension: The model

Tania Robens

Higgs extended

► < ☐ ► < ≥ ► < ≥ ►</p>
DESY, 03/12/18

э

Higgs Singlet extension (aka The Higgs portal)

The model

• Singlet extension:

simplest extension of the SM Higgs sector

 add an additional scalar, singlet under SM gauge groups (further reduction of terms: impose additional symmetries)
 ⇒ potential (*H* doublet, χ real singlet)

 $\mathbf{V} = -\mathbf{m}^2 \mathbf{H}^{\dagger} \mathbf{H} - \mu^2 \, \chi^2 + \lambda_1 (\mathbf{H}^{\dagger} \mathbf{H})^2 + \lambda_2 \, \chi^4 + \lambda_3 \mathbf{H}^{\dagger} \mathbf{H} \, \chi^2,$

- collider phenomenology studied by many authors: Schabinger, Wells; Patt, Wilzcek; Barger ea; Bhattacharyya ea; Bock ea; Fox ea; Englert ea; Batell ea; Bertolini/ McCullough; ...
- our approach: minimal: no hidden sector interactions
- equally: Singlet acquires VeV

Tania Robens

Singlet

Singlet extension: free parameters in the potential

VeVs:
$$H \equiv \begin{pmatrix} 0\\ rac{ ilde{h}+ extsf{v}}{\sqrt{2}} \end{pmatrix}, \ \chi \equiv rac{ ilde{h}'+ extsf{x}}{\sqrt{2}}.$$

• potential: 5 free parameters: 3 couplings, 2 VeVs

 $\lambda_1,\,\lambda_2,\,\lambda_3,\,v,\,x$

rewrite as

 $\mathbf{m}_{\mathbf{h}}, \mathbf{m}_{\mathbf{H}}, \sin \alpha, \mathbf{v}, \tan \beta$

• fixed, free

Tania Robens

 $\sin \alpha$: mixing angle, $\tan \beta = \frac{v}{x}$

• physical states $(m_h < m_H)$:

$$\begin{pmatrix} \mathbf{h} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \tilde{h} \\ h' \end{pmatrix},$$
Higgs extended
$$\begin{array}{c} \text{Higgs extended} \\ \text{DESY. 03/12/18} \end{array}$$

Inert Doublet Model

Appendix

• = •

DESY. 03/12/18

SM phenomenology in three lines

Question 1:

Modfication for SM-like final states at tree level ?

In case we neglect the new *Hhh* coupling:

- $\bullet~{\rm light}/~{\rm heavy}~{\rm Higgs}~{\rm non-singlet}~{\rm component}\sim\cos\alpha/\sin\alpha$
- \Rightarrow for light/ heavy Higgs: every SM-like coupling is rescaled by $\cos \alpha / \sin \alpha$
- ⇒ this alone would lead to "global" $\cos^4 \alpha / \sin^4 \alpha$ ($\cos^2 \alpha / \sin^2 \alpha$) for full production and decay (production or decay)
 - BRs stay the same

Tania Robens

Inert Doublet Model

Appendix

Tree-level rescaling (2)

• in addition: new physics channel:

$$H \rightarrow h h$$

effect:

 $\Gamma_{\rm tot}(H) = \sin^2 \alpha \, \Gamma_{\rm SM}(H) + \, \Gamma_{H \to h \, h},$

needs to be included for SM like decays

$$\kappa \equiv \frac{\sigma_{\rm BSM} \times {\rm BR}_{\rm BSM}}{\sigma_{\rm SM} \times {\rm BR}_{\rm SM}} = \frac{\sin^4 \alpha \, \Gamma_{\rm tot,SM}}{\Gamma_{\rm tot}}$$

breakdown:

 $\sigma_{\text{prod}} = \sin^2 \alpha \times \sigma_{\text{prod},\text{SM}}, \text{ } \text{BR}_{H \to \dots} = \sin^2 \alpha \frac{\Gamma_{\text{tot}, \text{ SM}}}{\Gamma_{\text{tot}}} \times \text{BR}_{H \to \dots}^{\text{SM}}$ $\Rightarrow \text{ sufficient for tree level rescaling} \Leftarrow$

Tania Robens

Higgs extended

DESY, 03/12/18

Parameter space including bounds

Bounds

G.M. Pruna, TR, PRD 88 (2013) 115012; D. Lopez-Val, TR, PRD 90 (2014) 114018; TR, T. Stefaniak, EPJC75 (2015)3, 104; EPJC76 (2016)5, 268

Tania Robens

Higgs extended

DESY, 03/12/18

直 とう きょう く ほう

Parameter space including bounds

Theoretical and experimental constraints on the model

our studies: $m_{h,H} = 125.09 \, \text{GeV}, \, 0 \, \text{GeV} \le m_{H,h} \le 1 \, \text{TeV}$

- Iimits from perturbative unitarity
- 2 limits from EW precision observables through S, T, U
- Special: limits from W-boson mass as precision observable
- **perturbativity** of the couplings (up to certain scales*)
- vacuum stability and minimum condition (up to certain scales*)
- **o collider limits** using HiggsBounds
- measurement of light Higgs signal rates using HiggsSignals and ATLAS-CONF-2015-044 [signal strength combination]

(debatable: minimization up to arbitrary scales, \Rightarrow perturbative unitarity to arbitrary high scales [these are common procedures though in the SM case])

(*): only for
$$m_h = 125.09 \, {
m GeV}$$

Tania Robens

Introduction and Motivation	Singlet 000000000000000000000000000000000000	Inert Doublet Model	Appendix
Parameter space including bounds			
Results			

• strongest constraints:

- $m_H \gtrsim 800\,{
 m GeV}$: perturbativity of couplings
- $m_H \in [270; 800] \text{GeV}$: m_W @ NLO
- $m_H \in [125; 800] ext{GeV}$: experimental searches/ signal strength
 - $m_h \lesssim 120 \, {
 m GeV}$: SM-like Higgs coupling rates (+ LEP)

< □ ト < □ ト < 三 ト < 三 ト < 三 ト 三 の Q () DESY, 03/12/18

 $\Rightarrow \kappa \leq 0.25$ for all masses considered here

 $\Gamma_{tot} \lesssim 0.02 \, m_H$

⇒ Highly (??) suppressed, narrow(er) heavy scalars ⇐
 ⇒ new (easier ?) strategies needed wrt searches for SM-like
 Higgs bosons in this mass range ⇐

[width studies (~ 2015): cf. Maina ; Kauer, O'Brien; Kauer, O'Brien, Vryonidou; Ballestrero, Maina; Dawson,

Lewis; ...]

Tania Robens

Introduction and Motivation

 Appendix

Parameter space including bounds

Comments on constraints (1) - Perturbativity issues

Perturbative unitarity:

- tests combined system of all (relevant) 2 ightarrow 2 scattering amplitudes for s ightarrow ∞
- we considered:

WW, ZZ, HH, Hh, hh \rightarrow WW, ZZ, HH, Hh, hh

- makes sure that the largest eigenvalue for the "0"-mode partial wave of the diagnolized system ≤ 0.5
- "crude" check that unitarity is not violated (Literature: Lee/ Quigg/ Thacker, Phys. Rev. D 16, 1519 (1977)) (in the end: all "beaten" by perturbativity of running couplings)

Tania Robens

Higgs extended

DESY, 03/12/18

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

DESY. 03/12/18

Parameter space including bounds

Comments on constraints (2) - running couplings and vacuum

Vacuum stability and perturbativity of couplings at arbitrary scales

- clear: vacuum should be stable for large scales
- unclear: do we need ew-like breaking everywhere ? perturbativity ?
- \Rightarrow check at relative low scale
- ⇒ bottom line: small mixings excluded from stability for larger scales (for $m_H \le 1 \,\mathrm{TeV}$!! for the model-builders...)
 - arbitrary large m_H can cure this !! cf Lebedev; Elias-Miro ea. Out of collider range though (~ $10^8 \,\mathrm{GeV}$) (...like SUSY, this model can never be excluded...)
 - perturbativity of couplings severely restricts parameter space, even for low scales

Tania Robens

Introduction and Motivation

 Inert Doublet Model

Appendix

Parameter space including bounds

Comments on constraints (2) - running couplings and vacuum

- perturbativity: $|\lambda_{1,2,3}(\mu_{run})| \leq 4\pi$
- **2** potential bounded from below: $\lambda_1, \lambda_2 > 0$
- **③** potential has local minimum: $4\lambda_1\lambda_2 \lambda_3^2 > 0$

 \implies need (2), can debate about (1), (3) at all scales \Leftarrow

Tania Robens

Higgs extended

DESY, 03/12/18

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Singlet ○○○○○●●○○○○○○○○○○○○

MW at NLO NLO corrections to m_W [D. Lopez-Val, TR, (PRD 90 (2014) 114018)]

- electroweak fits: fit O(20) parameters, constraining S, T, U
- idea here: single out m_W , measured with error $\sim 10^{-4}$
- setup renormalization for Higgs and Gauge boson masses
- EW gauge and matter sector: on-shell scheme
- Higgs sector: several choices, currently a mixture of onshell/ \overline{MS}

(in this case: $\delta \lambda$ only enter at 2-loop \implies not relevant here)

\implies first step on the road to full renormalization \Longleftarrow

→ Ξ → Ξ

m_W at NLO

NLO corrections to m_W

Contribution to m_W for different Higgs masses

Tania Robens

Higgs extended

LHC

LHC

TR, T. Stefaniak, EPJC75 (2015)3, 104; EPJC76 (2016)5, 268

Tania Robens

Higgs extended

DESY, 03/12/18

< ∃→

э

Inert Doublet Model

Appendix

LHC

Combined limits on $|\sin \alpha|$

(TR, T. Stefaniak, Eur.Phys.J. C76 (2016) no.5, 268)

several bounds on $|\sin \alpha|$

m_W , perturbativity, LHC direct searches, Higgs Signal strength, a = 1000

Tania Robens

Higgs extended

Appendix

Combined limits on $|\sin \alpha|$!! NEW !! (A. Ilnicka, TR, T. Stefaniak, arXiv:1803.03594)

m_W still strongest constraint for $m_H \gtrsim 300 \, {\rm GeV}$; \Rightarrow strong improvement: direct searches (ZZ @ 13 TeV) \Leftarrow

Tania Robens

Higgs extended

Introduction and Motivation

Tania Robens

Singlet

Inert Doublet Model

Appendix

LHC

One more word about $H \rightarrow h h$

• viable alternative: search for

 $H \rightarrow h h \rightarrow \dots$

• in our case: BR $(H \rightarrow h h) \lesssim 0.4$

• widely discussed in the literature

(for recent work, cf Gouzevitch, Oliveira, Rojo, Rosenfeld, Salam, Sanz; Cooper, Konstantinidis, Lambourne, Wardrope; ...) *WW* always dominant

Higgs extended

Appendix

Results from generic scans and predictions for LHC 14 (TR, T. Stefaniak, Eur.Phys.J. C76 (2016) no.5, 268)

Tania Robens

Higgs extended

Singlet

LHC

What about the "inverse" scenario, ie. $m_H = 125.1 \,\mathrm{GeV}$

mainly ruled out by LEP and/ or χ^2 fit from HiggsSignals however, *still* large number produced due to large $\sigma_{gg \rightarrow h}$

$m_h[\text{GeV}]$	$ \sin lpha _{\min, exp}$	$ \sinlpha _{min, 2\sigma}$	$(aneta)_{\sf max}$	$\#$ gg \sim
110	0.82	0.94	9.3	105
100	0.85	0.90	10.1	10 ⁵
90	0.90		11.2	10 ⁵
80	0.97		12.6	104
70	0.99		14.4	104
60	0.98	\gtrsim 0.99	16.8	104
50	0.98	\gtrsim 0.99	20.2	104
40	0.99	$\gtrsim 0.99$	25.2	104

Table : Upper limit on $\tan\beta$ from perturbative unitarity. (-- means no additional constraint)

(side remark: for $m_h \gtrsim 60 \,\mathrm{GeV}$, tan β irrelevant for collider observables) Tania Robens Higgs extended DESY, 03/12/18

Renormalization

Full Renormalization

F. Bojarski, G. Chalons, D. Lopez-Val, TR JHEP 1602 (2016) 147

Tania Robens

Higgs extended

✓ ☐ > < ≥ > < 3 DESY, 03/12/18

< ∃⇒

- next topic: full electroweak renormalization
- many parts of ew sector: follow SM prescriptions
- new: renormalize

 $T_{h,H}; v; x; m_{h,H}^2; Z_{h,H,hH,Hh}; m_{hH}^2$

DESY. 03/12/18

- \Rightarrow in total: 11 parameters in scalar sector
- ⇒ need to be determined by suitable renormalization conditions

Tania Robens

Renormalization

Full renormalization (2)

\Rightarrow Our choices \Leftarrow

- Tadpoles: $\delta T = -T [\hat{\tau} = 0]$
- v: as in SM, on-shell (ie through ew gauge sector)
- $\delta x = 0$ (not fixed by any measurement) !!! choice !!! [no UV-divergence ! ; Sperling ea, 2013]
- $\delta m_{h,H}, \, \delta Z_{H,h}$: on-shell
- difficult part off-diagonal terms m_{hH}^2 , δZ_{hH} !!
- we choose: 'improved on-shell scheme' !!
- for the experts: leads to gauge-invariant counterterms without resorting to physical measurements; tested via SloopS (Boudjema, Semenov, Temes 2005; Baro, Boudjema, Semenov 2007/ 2008; Baro, Boudjema 2009)
- based on 'Pinch Technique' (Cornwall 1982; Cornwall, Pappavassoliou 1989; Espinosa,

Yamada, 2002; Binosi, Papavassiliou 2009;...)

Tania Robens

Higgs extended

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Singlet

Inert Doublet Model

Appendix

Renormalization

Renormalization: numerical results

"typical" size of corrections

Tania Robens

Higgs extended

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
 DESY, 03/12/18

э

Singlet

Appendix

Renormalization

Renormalization: numerical results, $m_h = 125 \,\mathrm{GeV}$

all results here for $\Gamma_{H \to h h}$

exlusions (left): m_W , vacuum stability ; white space (right): corrections > 100 %

Tania Robens

Higgs extended

► < □ ► < □ ► < □ ► < □ < ○ < ○</p>
DESY, 03/12/18

Summary

Summary and Outlook: Singlet

Tania Robens

Higgs extended

< □ > < □ > < □ > < □ > < □ > < □ >
 DESY, 03/12/18

э

Singlet

Inert Doublet Model

Summary

Summary

- Singlet extension: simplest extension of the SM Higgs sector, easily identified with one of the benchmark scenarios of the HHXWG (cf. also YR3, Snowmass report, YR4)
- constraints on maximal mixing from m_W at NLO ($m_H \in [200 \,\mathrm{GeV}; 800 \,\mathrm{GeV}]$), experimental searches and fits ($m_{H,h} \leq 200 \,\mathrm{GeV}$) and/ or running couplings ($m_H \geq 800 \,\mathrm{GeV}$)
- quite narrow widths wrt SM-like Higgses in this mass range ⇒ better theoretical handle
- quite large suppression from current experimental/ theoretical constraints

Inert Doublet Model

Appendix

Other possible extensions

- A priori: no limit to extend Higgs sector
- make sure you
 - have a suitable ew breaking mechanism, including a Higgs candidate at $\sim~125\,{\rm GeV}$
 - can explain current measurements
 - are **not excluded by current searches** and precision observables
- nice add ons:
 - can push vacuum breakdown to higher scales
 - can explain additional features, e.g. dark matter, or hierarchies in quark mass sector

Another option: Two Higgs Doublet models: 5 Higgses (as eg realized in the MSSM,...)

CP -even, neutral CP-odd, neutral charged Tania Robens Higgs extended

Inert Doublet Model

A. Ilnicka, M. Kracwzyk, TR Phys.Rev. D93 (2016) no.5, 055026

Tania Robens

Higgs extended

DESY, 03/12/18

< ∃⇒

э

Inert Doublet Model

Appendix

Inert doublet model: The model

• idea: take CP conserving two Higgs doublet model, add additional Z₂ symmetry

$$\phi_D \rightarrow -\phi_D, \phi_S \rightarrow \phi_S, SM \rightarrow SM$$

- ⇒ obtain a 2HDM with (a) dark matter candidate(s)
 - potential

$$V = -\frac{1}{2} \left[m_{11}^2 (\phi_S^{\dagger} \phi_S) + m_{22}^2 (\phi_D^{\dagger} \phi_D) \right] + \frac{\lambda_1}{2} (\phi_S^{\dagger} \phi_S)^2 + \frac{\lambda_2}{2} (\phi_D^{\dagger} \phi_D)^2 + \lambda_3 (\phi_S^{\dagger} \phi_S) (\phi_D^{\dagger} \phi_D) + \lambda_4 (\phi_S^{\dagger} \phi_D) (\phi_D^{\dagger} \phi_S) + \frac{\lambda_5}{2} \left[(\phi_S^{\dagger} \phi_D)^2 + (\phi_D^{\dagger} \phi_S)^2 \right],$$

 only one doublet acquires VeV v, as in SM (⇒ implies analogous EWSB)

Tania Robens

Higgs extended

► < □ > < ≥ > < ≥ > ≥ DESY, 03/12/18 Inert Doublet Model

Appendix

Number of free parameters

 \Rightarrow then, go through standard procedure...

- \Rightarrow minimize potential
- \Rightarrow determine number of free parameters

Number of free parameters here: 7

• e.g.

- $\mathbf{v}, \, \mathbf{M_h}, \, \mathbf{M_H}, \, \mathbf{M_A}, \, \mathbf{M_{H^{\pm}}}, \lambda_2, \, \lambda_{345} \left[= \, \lambda_3 + \lambda_4 + \lambda_5 \right]$
- v, M_h fixed \Rightarrow left with **5** free parameters

Tania Robens

Higgs extended

DESY, 03/12/18

Constraints: Theory

- As before: need to consider all current constraints on the model
- Theory constraints: vacuum stability, positivity, constraints to be in inert vacuum
 ⇒ limits on (relations of) couplings
- perturbative unitarity, perturbativity of couplings
- **choosing** *M_H* as dark matter:

 $M_H \leq M_A, M_{H^{\pm}}$

通 と く ヨ と く ヨ と … ヨ

Inert Doublet Model

Appendix

Constraints: Experiment

$$M_h = 125.1 \,\mathrm{GeV}, \, v = 246 \,\mathrm{GeV}$$

- total width of M_h
- total width of W, Z
- collider constraints from signal strength/ direct searches
- electroweak precision through S, T, U
- unstable H^{\pm}
- reinterpreted/ recastet LEP/ LHC SUSY searches (Lundstrom ea 2009; Belanger ea, 2015)
- dark matter relic density (upper bound)
- dark matter direct search limits (before: LUX; now: XENON1T)

⇒ tools used: 2HDMC, HiggsBounds, HiggsSignals, MicrOmegas

Tania Robens

Higgs extended

DESY, 03/12/18

Obvious/ direct constraints on couplings

- some constraints \Rightarrow direct limits on couplings
- examples: limit on λ_2 from *HHHH* coupling, limit on $\lambda_{345}(M_H)$ from direct detection

 $M_{H}, \ \lambda_{345}$ plane, limits from LUX

 $\lambda_2, \ \lambda_{345}$ plane and limits from perturbativity,

positivity

Higgs extended

DESY, 03/12/18

Singlet

Inert Doublet Model

Appendix

Other constraints less obvious (interplay); result \Rightarrow mass degeneracies

Effect of updated constraints [especially: XENON1T] [1705.06655]

LUX

XENON

Inert Doublet Model

Appendix

Benchmark planes [old]

Benchmark planes [new; XENON/ Signal rates improved]

Benchmark selection for current LHC run

- \Rightarrow points need to have passed all bounds
- ⇒ total cross sections calculated using Madgraph5, IDM model file from Goudelis ea, 2013 (LO)
- \Rightarrow effective ggH vertex implemented by hand
 - highest production cross sections: HA; $H^{\pm}H$; $H^{\pm}A$; $H^{+}H^{-}$
 - decay $A \rightarrow HZ$ always 100 %
 - decay $H^{\pm} \rightarrow H W^{\pm}$ usually dominant

$$\begin{array}{rll} p \, p \, \rightarrow \, H \, A & : & \leq \, 0.03 \, \mathrm{pb}, \\ p \, p \, \rightarrow \, H^{\pm} \, H & : & \leq \, 0.03 \, \mathrm{pb}, \\ p \, p \, \rightarrow \, H^{\pm} \, A & : & \leq \, 0.015 \, \mathrm{pb}, \\ p \, p \, \rightarrow \, H^{+} \, H^{-} & : & \leq \, 0.01 \, \mathrm{pb}. \end{array}$$

Tania Robens

Higgs extended

DESY, 03/12/18

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

DESY. 03/12/18

Parameters tested at LHC: masses

- side remark: all couplings involving gauge bosons determined by electroweak SM parameters
- LHC@13 TeV does not depend on λ_2 , only marginally on λ_{345}
- all relevant couplings follow from ew parameters (+ derivative couplings) ⇒ in the end a kinematic test
- $\bullet\,$ only in expectional cases $\lambda_{\rm 345}$ important; did not find such points
- ⇒ high complementarity between astroparticle physics and collider searches

(holds for $M_H \geq rac{M_h}{2}$)

Tania Robens

DESY, 03/12/18

Last comment: cases where $M_H \leq M_h/2$

- discussion so far: decay $h \rightarrow HH$ kinematically not accessible
- for these cases, discussion along different lines
- ⇒ extremely strong constraints from signal strength, and dark matter requirements

 \bullet additional constraints from combination of W,Z decays and recasted analysis at LEP

lower limit $M_H \sim 40 \,\mathrm{GeV}$ DESY, O

Tania Robens

Summary

- LHC run II in full swing \Rightarrow exciting times ahead of us
- one important question: test Higgs sector, especially wrt extensions/ additional matter content
- from current LHC and astrophysical data: models already highly constrained
- discussion here: 2HDM with dark matter (IDM)
- identified viable regions in parameter space
- from these: predictions for current LHC run [A. Ilnicka, M. Krawzyk, TR, CERN Yellow Report]

!! stay tuned, and thanks for listening **!!**

Tania Robens

Higgs extended

DESY, 03/12/18

< ⊒ >

ヘロン 人間 とくほと くほとう

DESY, 03/12/18

æ

Appendix

Tania Robens

Higgs extended

Inert Doublet Model

Appendix

... and discovery

[ATLAS collaboration, 2 e 2 μ Higgs candidate]

[ATLAS collaboration, Phys.Lett. B716 (2012) 1-29]

Higgs extended

■ ト < □ ト < Ξ ト < Ξ ト Ξ < つへ(DESY, 03/12/18 Inert Doublet Model

Appendix

Finally: collider results

- Incorporation of collider bounds: in principle many things need to be considered: Limits from LEP, Tevatron, LHC, ...
- same: agreement with observed coupling strengths

Tania Robens

Higgs extended

DESY, 03/12/18

Inert Doublet Mode

Appendix

Coupling and mass relations

$$m_h^2 = \lambda_1 v^2 + \lambda_2 x^2 - \sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2},$$
 (1)

$$m_{H}^{2} = \lambda_{1}v^{2} + \lambda_{2}x^{2} + \sqrt{(\lambda_{1}v^{2} - \lambda_{2}x^{2})^{2} + (\lambda_{3}xv)^{2}}, \quad (2)$$

$$\sin 2\alpha = \frac{\lambda_3 x v}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}},$$

$$\cos 2\alpha = \frac{\lambda_2 x^2 - \lambda_1 v^2}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}}.$$
(3)

Tania Robens

Higgs extended

< □ > < □ > < □ > < □ > < □ > < □ >
 DESY, 03/12/18

э

RGE running in more detail (1)

Question: at which scale did we require perturbativity ? Answer: "just above" the SM breakdown (other answers equally valid...)

- RGEs for this model well-known (cf eg Lerner, McDonald)
- decoupling ($\lambda_3 = 0$): recover SM case
- in our setup: $\mu_{\rm SM,break} \sim 2.5 \times 10^{10} \, {\rm GeV}$ (remark: just simple NLO running)
- we took: $\mu_R \sim 4.0 \times 10^{10} \, {
 m GeV}$

(higher scales \iff stronger constraints)

- obvious: for $m_H \sim 125\,{\rm GeV}$, breakdown "immediate" when going to $\mu_{\rm run} > v$
- \Rightarrow disregard constraints from running in this case

Tania Robens

Higgs extended

DESY, 03/12/18

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

RGE running: variation of input parameters

- especially in sensitive cases, but also otherwise: check robustness against input parameters
- here: especially important in decoupling (ie SM-like) case (cf. various discussions in the literature...)
- our check:

vary $\alpha_s(m_Z), y_t(m_t)$ for 1 σ around central values

- main impact: on vacuum stability, ie $\lambda_1 > 0$ condition
- no significant change in $\kappa_{max}(m_H), ...$
- ⇒ not relevant for collider studies (at this stage...)

★ 3 → 3

Singlet

Inert Doublet Model

Appendix

Interim comment on total width

• Total width greatly reduced

width over mass

suppression factor of width

DESY, 03/12/18

Comments on constraints (1) - Perturbativity issues

• we tested: maximal m_H from PU

 \implies strongest constraints from $HH \rightarrow HH \Leftarrow$

• rule of thumb (exact for $\alpha = 0$): $\tan^2 \beta \leq \frac{16 \pi v^2}{3 m_{\mu}^2}$

Maximally allowed heavy Higgs masses from perturbative unitarity

Limits in sin α , tan β plane, maximally

allowed $m_H~\leq~1\,{
m TeV}$ from PU

\implies for realistic sin α and our m_H range, tan $\beta \lesssim 8$

Tania Robens

Higgs extended

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > ⊇
 DESY, 03/12/18

Comments on constraints (1) - Perturbativity issues

However...

- For the scenario $m_H = 125.7 \,\mathrm{GeV}, \, m_h \leq m_H$:
- $\Rightarrow \text{ strongest theory limit on } \tan \beta_{\max} \text{ from PU}$ (will comment on this later in more detail)
 - then: $\tan\beta\lesssim 20$

• remember: $\tan \beta$ only appears in Higgs self-couplings \Rightarrow currently only relevant for an open $H \rightarrow hh$ channel !!

Tania Robens

Higgs extended

DESY, 03/12/18

Inert Doublet Model

Appendix

Could we have seen them ??

all numbers below: $\sqrt{S_{hadr}}$ = 8TeV, $\int \mathcal{L}$ = 23 fb⁻¹

$m_{H}[{ m GeV}]$	$\kappa_{\sf max}$	$\#$ gg \sim	$\kappa'_{\sf max}$	$\#$ gg \sim
200	0.19	3×10^4	0	0
300	0.076	$6 \times \mathbf{10^3}$	0.039	3×10^3
400	0.058	4×10^3	0.019	1×10^3
500	0.046	1×10^3	0.013	380
600	0.042	510	0.013	160
700	0.035	180	0.010	50
800	0.035	90	0.010	25
900	0.029	40	0.007	10
1000	0.023	17	0.006	4

[for specific final state, multiply with SM-like BR (LO approx)] for $m_H \lesssim 600 \,\mathrm{GeV}$, may could already have been produced which are not excluded by current searches !!

Tania Robens

Higgs extended

DESY, 03/12/18

Tools which can do it ?? (incomplete list)

("it"=L0,NL0,...)

- LO: any tool talking to FeynRules (in principle)/ LanHep (in practice)
- implemented (and run): CompHep (M. Pruna), Whizard (J. Reuter), Sherpa (±) (would need some modification, T. Figy), privately modified codes (??)
- NLO: (mb) a modified version of **aMC@NLO** (R. Frederix) ?? (production only; might be important for VBF)
- higher orders: would need to be implemented in respective tools (I am not aware of any at the moment)

Tania Robens

Higgs extended

DESY, 03/12/18

通 ト イヨ ト イヨ ト 二 ヨ

Singlet

Inert Doublet Model

Appendix

Singlet Extension: Classical Lagrangian

$$\mathscr{L}_{\textbf{xSM}} = \mathscr{L}_{gauge} + \mathscr{L}_{fermions} + \mathscr{L}_{Yukawa} + \mathscr{L}_{scalar} + \mathscr{L}_{\textbf{GF}} + \mathscr{L}_{\textbf{ghost}}$$

$$\mathscr{L}_{\text{scalar}} = (\mathcal{D}^{\mu}\Phi)^{\dagger} \mathcal{D}_{\mu}\Phi + \partial^{\mu}S\partial_{\mu}S - \mathcal{V}(\Phi, S)$$
$$\mathcal{V}(\Phi, S) = \mu^{2} \Phi^{\dagger} \Phi + \lambda_{1} |\Phi^{\dagger}\Phi|^{2} + \mu_{s}^{2} S^{2} + \lambda_{2} S^{4} + \lambda_{3} \Phi^{\dagger} \Phi S^{2} .$$

- $\bullet \ \mathscr{L}_{gauge}, \ \mathscr{L}_{fermions}, \ \mathscr{L}_{Yukawa} \ \text{as in SM}$
- BRST invariance $\Rightarrow \delta_{\text{BRST}} \mathscr{L}_{GF} = -\delta_{\text{BRST}} \mathscr{L}_{ghost}$
- more later...

Tania Robens

Higgs extended

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > ⊇
 DESY, 03/12/18

Renormalization: gauge fixing

Our choice: non-linear gauge fixing !!

- reason: want to check gauge-parameter dependence for physical processes
- implementation: SLOOPS [Boudjema ea, '05; Baro ea, '07-'09]

$$\mathscr{L}_{GF} = -\frac{1}{\xi_W} F^+ F^- - \frac{1}{2\xi_Z} |F^Z|^2 - \frac{1}{2\xi_A} |F^A|^2$$

$$\begin{split} F^{\pm} &= \left(\partial_{\mu} \mp i e \tilde{\alpha} A_{\mu} \mp i g \cos \theta_{W} \tilde{\beta} Z_{\mu}\right) W^{\mu +} \\ &\pm i \xi_{W} \frac{g}{2} \left(v + \tilde{\delta}_{1} h + \tilde{\delta}_{2} H \pm i \tilde{\kappa} G^{0}\right) G^{+} \\ F^{Z} &= \partial_{\mu} Z^{\mu} + \xi_{Z} \frac{g}{2 \cos \theta_{W}} \left(v + \tilde{\epsilon}_{1} h + \tilde{\epsilon}_{2} H\right) G^{0} \\ F^{A} &= \partial_{\mu} A^{\mu} . \end{split}$$

• $\tilde{\alpha}, \tilde{\beta}, ...$: non-linear gauge-fixing parameters • $\tilde{\alpha} = \tilde{\beta} = ... = 0, \xi = 1 \Rightarrow$ back to t'Hooft-Eeynman gauge

Renormalization: SM inheritance

- S: singlet under SM gauge group
- \Rightarrow in the electroweak gauge sector: follow SM prescriptions*
 - parameter count in the scalar sector: 11 counterterms
- \Rightarrow renormalize

$$T_{h,H}; v; v_s; m_{h,H}^2; Z_{h,H,hH,Hh}; m_{hH}^2$$

⇒ need to be determined by suitable renormalization conditions

* performed in 2 different electroweak schemes: $\alpha_{em} : \alpha_{em}(0), m_W, m_z$ as input; $G_F : \alpha_{em}(0), G_F, m_z$ as input, related via Δr

< ⊒ >

Inert Doublet Model

Appendix

... and in more detail...

$$\begin{array}{ccc} \mathbf{v}_i^0 \longrightarrow \mathbf{v}_i + \delta \mathbf{v}_i, \\ T_i^0 \longrightarrow T_i + \delta T_i, \\ \mathcal{M}_{\phi}^2 \longrightarrow \mathcal{M}_{\phi}^2 + \delta \mathcal{M}_{\phi}^2 \end{array}$$

where
$$\delta \mathcal{M}_{hH}^2 = U(\alpha) \cdot \delta \mathcal{M}_{\phi_h,\phi_s}^2 \cdot U(-\alpha) = \begin{pmatrix} \delta m_h^2 & \delta m_{hH}^2 \\ \delta m_{hH}^2 & \delta m_H^2 \end{pmatrix}$$

$$\left(\begin{array}{c}h\\H\end{array}\right)^{0} \longrightarrow \left(\begin{array}{c}1+\frac{1}{2}\delta Z_{h} & \frac{1}{2}\delta Z_{hH}\\ \frac{1}{2}\delta Z_{Hh} & 1+\frac{1}{2}\delta Z_{H}\end{array}\right) \left(\begin{array}{c}h\\H\end{array}\right)$$

NO mixing angle renormalization

Tania Robens

Higgs extended

< □ > < □ > < □ > < ⊇ > < ⊇ >
 DESY, 03/12/18

э

Inert Doublet Model

DESY. 03/12/18

Appendix

Different choices for mixed terms $\delta Z_{Hh,hH}$, δm_{hH}^2

Always:
$$\operatorname{\mathbf{Re}} \hat{\Sigma}_{hH}(m_h^2) = 0$$
; $\operatorname{\mathbf{Re}} \hat{\Sigma}_{hH}(m_H^2) = 0$

- Onshell scheme: $\delta Z_{hH} = \delta Z_{Hh}$
- drawback: predictions remain gauge-parameter dependent !!
 - Mixed $\overline{\rm MS}/{\rm on-shell}$: fix δm^2_{hH} through UV-divergence of λ_2
- \Rightarrow drawback: corrections $\sim \sin^{-1} \alpha$, $\cos^{-1} \alpha$, can get large !!
 - improved onshell

$$\delta m_{hH}^2 = \operatorname{Re} \Sigma_{hH}(p_*^2) \big|_{\xi_W = \xi_Z = 1, \tilde{\delta}_i = 0}, \ p_*^2 = \frac{m_h^2 + m_H^2}{2}$$

[similar result e.g. in Baro, Boudjema, Phys. Rev. D80 (2009) 076010; ...]

⇒ drawback: NONE !!

Tania Robens

Higgs extended

Inert Doublet Model

Appendix

... and in numbers...

NLO corrections to $H \rightarrow h h$ decay, gauge-parameter dependence

	$\delta \Gamma_{H \rightarrow bh}^{1-loop}$ [GeV]						
Scheme	$\Delta=0, \{nlgs\}=0$	$\Delta = 10^7, \{nlgs\} = 0$	$\Delta = 10^7, \{nlgs\} = 10$				
OS	$+4.26334888 \times 10^{-3}$	$+4.26334886 \times 10^{-3}$	$-5.27015844 \times 10^{3}$				
Mixed MS/OS	$+6.8467506 \times 10^{-3}$	$+6.8467504 \times 10^{-3}$	$+6.8467500 \times 10^{-3}$				
Improved OS	$+3.9393569 \times 10^{-3}$	$+3.9393568 \times 10^{-3}$	$+3.9393556 \times 10^{-3}$				

 $\delta \Gamma^{1-\text{loop}}_{H \rightarrow hh}$

$\delta m_{hH}^2 ^{\infty}$	$\{nlgs\} = 0$	$\{nlgs\} = 10$	$\delta m_{hH}^2 ^{fin}$	$\{nlgs\} = 0$	$\{nlgs\} = 10$
OS	-5.80×10^{2}	-9.44×10^{2}	OS	$+5.75 \times 10^{3}$	$+8.80 \times 10^{3}$
Mixed MS/OS	-5.80×10^{2}	-5.80×10^{2}	Mixed MS/OS	-2.48×10^{2}	-2.48×10^{2}
Improved OS	-5.80×10^{2}	-5.80×10^{2}	Improved OS	$+5.72 \times 10^{3}$	$+5.72 \times 10^{3}$

 δm_{hH}^2

 Δ : UV-divergence; {ngls} : non-linear gauge fixing parameters

Tania Robens

Higgs extended

DESY, 03/12/18

留 と く ヨ と く ヨ と …

Singlet

Appendix

≣⇒

DESY, 03/12/18

Renormalization: numerical results, $m_h = 125 \,\mathrm{GeV}$

all results here for $\Gamma_{H \to h h}$

exlusions (left): m_W , vacuum stability ; white space (right): corrections > 100 %

Tania Robens

Higgs extended

Singlet

Inert Doublet Model

Appendix

Results for benchmarks (BR max)

high mass region					low mass region				
	m _H [GeV]	$ \sin \alpha $	$BR^{H \rightarrow h h}$	tan β		m _h [GeV]	$ \sin \alpha $	$BR^{H \rightarrow h h}$	tan β
BHM1	300	0.31	0.34	3.71	BLM1	60	0.9997	0.26	0.29
BHM2	400	0.27	0.32	1.72	BLM2	50	0.9998	0.26	0.31
BHM3	500	0.24	0.27	2.17	BLM3	40	0.9998	0.26	0.32
BHM4	600	0.23	0.25	2.70	BLM4	30	0.9998	0.26	0.32
BHM5	700	0.21	0.24	3.23	BLM5	20	0.9998	0.26	0.31
BHM6	800	0.21	0.23	4.00	BLM6	10	0.9998	0.26	0.30

						-					
	$\Gamma^{LO}_{H \rightarrow hh}$	$\Gamma_{H \rightarrow hh}^{NLO}$	$\delta_{oldsymbol{lpha}}$ [%]	δ _{GF} [%]	Г _Н		$\Gamma^{LO}_{H \rightarrow hh}$	$\Gamma_{H \rightarrow hh}^{NLO}$	$\delta_{oldsymbol{lpha}}$ [%]	δ _{GF} [%]	Г _Н
BHM1	0.399	0.413	3.411	3.291	1.210	BLM1	1.426	1.536	7.765	7.763	5.506
BHM2	0.963	1.026	6.485	6.272	3.092	BLM2	1.439	1.472	2.305	2.304	5.520
BHM3	1.383	1.463	5.803	5.604	5.299	BLM3	1.423	1.432	0.586	0.586	5.504
BHM4	2.067	2.161	4.520	4.361	8.574	BLM4	1.419	1.415	-0.272	-0.272	5.500
BHM5	2.637	2.717	3.027	2.918	11.413	BLM5	1.431	1.425	-0.445	-0.445	5.512
BHM6	3.798	3.867	1.826	1.759	17.204	BLM6	1.427	1.421	-0.438	-0.438	5.508

\implies "typical" corrections between .2 and 20 % \Leftarrow

Tania Robens

Higgs extended

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 DESY, 03/12/18

Inert Doublet Model

Appendix

Newest results for indirect detection [1705.06655]

Tania Robens

Higgs extended

DESY, 03/12/18

Very brief: parameters determining couplings (production and decay)

dominant production modes: through Z; Z, γ , h for AH; $H^+H^$ important couplings:

•
$$Z H A$$
: $\sim \frac{e}{s_W c_w}$

•
$$Z H^+ H^-$$
: $\sim e \coth (2 \theta_w)$

•
$$\gamma H^+ H^-$$
: $\sim e$

•
$$h H^+ H^-$$
: $\lambda_3 v$

•
$$H^+ W^+ H$$
: $\sim \frac{e}{s_w}$

• $H^+ W^+ A$: $\sim \frac{e}{s_w}$

!! mainly determined by electroweak SM parameters **!!**

Tania Robens

Higgs extended

Singlet

Inert Doublet Mode

Appendix

More direct constraints on couplings

constraints on combination of M[±]_H/M_h and λ₃ from one-loop corrected rate of h → γγ (constraints: ratio too low !!)

Inert Doublet Model

Appendix

Aside: typical BRs

- decay $A \rightarrow HZ$ always 100 %
- decay $H^{\pm} \rightarrow H W^{\pm}$

second channel $H^{\pm}
ightarrow A W^{\pm}$

 \implies collider signature: SM particles and MET \Longleftarrow

Tania Robens

Higgs extended

DESY, 03/12/18

Inert Doublet Model

Appendix

Total widths in IDM scenario

Figure : Total widths of unstable dark particles: A and H^\pm in plane of their and dark matter masses.

Tania Robens

Higgs extended

DESY, 03/12/18

Inert Doublet Mode

Appendix

Dark matter relic density

all but DM constraints

all but DM constraints

DESY, 03/12/18

Higgs extended

Combination of ew gauge boson total widths and LEP recast

• decays widths W, Z: kinematic regions

$$M_{A,H} + M_H^{\pm} \geq m_W, M_A + M_H \geq m_Z, 2 M_H^{\pm} \geq m_Z.$$

• LEP recast (Lundstrom 2008)

 $M_A \leq 100 \,\mathrm{GeV}, \, M_H \leq 80 \,\mathrm{GeV}, \Delta M \geq 8 \,\mathrm{GeV}$

• combination leads to

- $M_H \in [0; 41 \, {
 m GeV}]$: $M_A \ge 100 \, {
 m GeV}$,
- $M_H \in [41; 45 \text{GeV}]$: $M_A \in [m_Z M_H; M_H + 8 \text{GeV}]$ or
 - $M_A \geq 100 \, {
 m GeV}$
- $M_H \in [45; 80 {
 m GeV}]$: $M_A \in [M_H; M_H + 8 {
 m GeV}]$ or $M_A \ge 100 {
 m GeV}$

Tania Robens

Higgs extended

C > < </p>
DESY, 03/12/18

Inert Doublet Model

DESY. 03/12/18

Appendix

Last topic: multicomponent dark matter

If $\Omega \, < \, \Omega_{\text{DM}}^{\text{Planck}}$: what does it mean ?

 \Rightarrow one possible understanding:

Multi-component dark matter

• in practise: direct detection limits relaxed, according to

$$\sigma\left(\textit{M}_{\textit{H}}
ight) \,\leq\, \sigma^{\mathsf{LUX}}(\textit{M}_{\textit{H}}) imes \, rac{\Omega^{\mathsf{Planck}}}{\Omega(\textit{M}_{\textit{H}})}$$

- \Rightarrow in practise: larger parameter space for λ_{345}
- \Rightarrow influences especially AA production

Tania Robens

Higgs extended

Appendix

AA production with rescaled dark matter

before: $\sigma_{AA}^{13 \,\mathrm{TeV}} \leq 0.0015 \,\mathrm{pb}$

strongest constraint now : $BR_{h \rightarrow \gamma\gamma}$

Tania Robens

Higgs extended

DESY, 03/12/18

... and what if I want exact DM relic density ??

[preliminary results]

E.g. this means

- *m_{H[±]*} ∈ [100 GeV; 620 GeV] or > 840 GeV
 m_H ∉ [75 GeV; 120 GeV] or ~ 54 GeV
- ...

Tania Robens

Higgs extended

DESY, 03/12/18

Last comment: IDM tools for LHC phenomenology

- leading order production and decay: Madgraph5, + (currently) private version for ggh (top loop in $m_{top} \rightarrow \infty$ limit)
- in principle available: gg @ NLO, MG5 (needs however modification of current codes, not straightforward)
- IMHO: currently LO sufficient

Last comments: publications where scan has been used

- Production of Inert Scalars at the high energy e⁺e⁻ colliders, M. Hashemi ea, JHEP 1602 (2016) 187 use Yellow Report benchmarks
- Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC, P. Poulose ea, Phys.Lett. B765 (2017) 300-306 use benchmarks with $m_H = 65 \,\mathrm{GeV}$
- Yellow Report IV of the Higgs Cross Section Working Group, arXiv:1610.07922
- S. Moretti ea, to appear

伺 ト イヨ ト イヨ ト 二 ヨ

Benchmarks submitted to Higgs Cross Section Working Group

all benchmarks: $A \rightarrow Z H = 100 \%$

• Benchmark I: low scalar mass

 $M_{H}=57.5\,{\rm GeV},\,M_{A}=113.0\,{\rm GeV},M_{H^{\pm}}=123\,{\rm GeV}$

 $\Gamma_H = 4.8 \,\mathrm{MeV}, \ \Gamma_A = 1.5 \,\times \, 10^{-1} \,\mathrm{MeV}, \ \Gamma_{H^{\pm}} = 1.0 \,\mathrm{MeV}$

 $HA: 0.371(4) \mathrm{pb}, \ H^+ \ H^-: 0.097(1) \mathrm{pb}$

Benchmark II: low scalar mass

$$\begin{split} M_H &= 85.5\,{\rm GeV},\, M_A = 111.0\,{\rm GeV}, M_{H^\pm} = 140,\,{\rm GeV}\\ \Gamma_H &= 4.4\,{\rm MeV},\, \Gamma_A = 1.5\,\times\,10^{-1}\,{\rm MeV},\, \Gamma_{H^\pm} = 4.6\,\times\,10^{-1}\,{\rm MeV} \end{split}$$

 $HA: 0.226(2) \mathrm{pb}, H^+H^-: 0.0605(9) \mathrm{pb}$

• Benchmark III: intermediate scalar mass

 $M_H = 128.0 \text{ GeV}, \ M_A = 134.0 \text{ GeV}, \ M_{H^{\pm}} = 176.0, \ \text{GeV}$ $\Gamma_{H} = 4.4 \text{ MeV}, \ \Gamma_A = 3.9 \times 10^{-6} \text{ MeV}, \ \Gamma_{DES} = 4.1 \times 10^{-1} \text{ MeV}$ Inert Doublet Model

Appendix

Benchmark: high masses

• Benchmark IV: high scalar mass, mass degeneracy

$$\begin{split} M_H &= 363.0 \, {\rm GeV}, M_A = 374.0 \, {\rm GeV}, M_{H^\pm} = 374.0 \, {\rm GeV} \\ \Gamma_H &= 4.4 \, {\rm MeV}, \ \Gamma_A = 8.4 \, \times \, 10^{-5} \, {\rm MeV}, \ \Gamma_{H^\pm} = 2.0 \, \times \, 10^{-4} \, {\rm M} \end{split}$$

 $H,A:0.00122(1){\rm pb},\ H^+H^-:0.00124(1){\rm pb}$

• Benchmark V: high scalar mass, no mass degeneracy

$$\begin{split} M_{H} &= 311.0 \, \text{GeV}, M_{A} = 415.0 \, \text{GeV}, M_{H^{\pm}} \;=\; 447.0 \, \text{GeV} \\ \Gamma_{H} &=\; 4.4 \, \text{MeV}, \; \Gamma_{A} \;=\; 220 \, \text{MeV}, \; \Gamma_{H^{\pm}} \;=\; 2.1 \, \text{GeV} \end{split}$$

H, A: 0.00129(1)pb, $H^+H^-: 0.000553(7)$ pb

伺 ト イヨ ト イヨ ト ・ ヨ ・ りへつ

Things I did not talk about

- similar scan, with focus on low mass regime: A. Belyaev ea [arXiv:1612.00511]
- \Rightarrow results agree, but more explicit plots for low mass range
- \Rightarrow more parameter points in the low- m_H region
- ⇒ find same lowest mass for dark matter candidate
 - also important: recasts for LHC, e.g. Belanger ea [Phys.Rev. D91 (2015) no.11, 115011]; A. Belyaev ea [arXiv:1612.00511]

\implies should/ could be turned around to devise optimized search strategies \Longleftarrow

so far, \implies no (!) experimental study is publicly available interpreting in the IDM framework !! \Leftarrow