

Industrialization process for XFEL Power couplers and Volume manufacturing

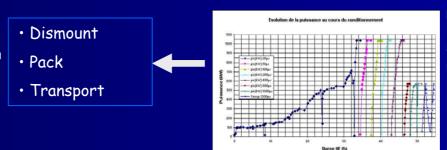
TTC meeting at Fermi lab, April 2007 Serge Prat / LAL - Orsay

Scope of delivery

Manufacturing parts and sub-assemblies

In ISO 6 and ISO 4 clean room:

- Cleaning
- pre-assembly
- Vacuum oven outgassing
- Final assembly on test stand



Final assembly

1000 couplers are needed for XFEL

Deliver 2 by 2

RF conditioning

- Vacuum pumping
- In situ baking
- · Connect to RF power

LAL

Expertise required from industry

EB welding

Vacuum brazing

TiN coating

Geometrical tolerances

Cu plating

Motorized tuning

EN 1.4435

EN 1.4429

Special austenitic stainless steel

Surface finish and cleanliness

TIG welding

- + Handling with gloves
- + Assembly in clean room
- + RF Conditioning

Industrialization studies:

Why?

Start with: Prototypes

(40 Couplers)

Industrialization process

Quality:

- uneven

- NC, several anomalies

Manufacturing:

- long and difficult

- lack of procedure

 only a few people have the competence

High cost

End objective: Large series

XFEL: 1 000 Couplers

ILC: 20 000 Couplers

Quality:

- equal for all items

- reliable

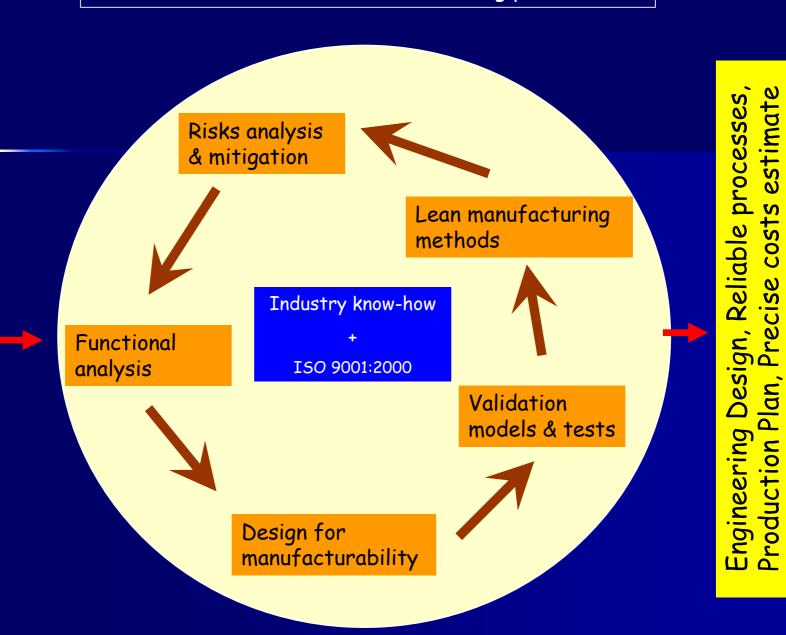
Manufacturing:

- regular process

- written procedures

- standard competence

Lower cost:


- 60% cost decrease

estimate

costs

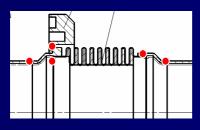
Working process Industrialization studies:

S. Prat

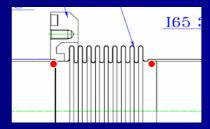
Functional specifications

TTC Meeting 23-26 April 2007 **FNAL**

Some results

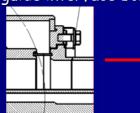

Functional analysis

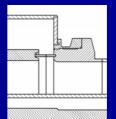
- · Small thermal emissivity coefficient → Polish the antenna (gain in radiative thermal power)
- Thermal model \rightarrow Cu rings at 4K point can be attached on thicker tube instead of bellows, brazed or glued
- Big flange on vacuum vessel: 12 holes are enough instead of 24
- Change some materials in actuator for radiation resistance
- Choose PPS for connectors and Kapton for cable insulation
- Floating big flanges must be supported

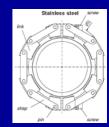


Design for manufacturability

- · Choose deformation techniques instead of machining: deep drawing, spinning, pull-out
- · Optimize the process for vacuum brazing by use of special tooling: adapt tolerances & thermal expansion
- Decrease number of parts and junctions:

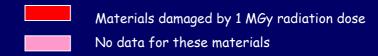

6 Parts 4
5 Junctions 2




Lean manufacturing

Use RF seals for better electrical contact at waveguide interface box

Use chain clamp instead of screws for assembly

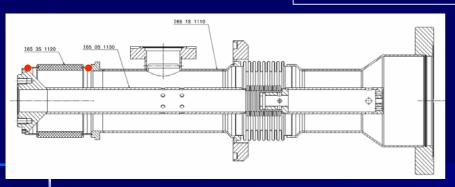


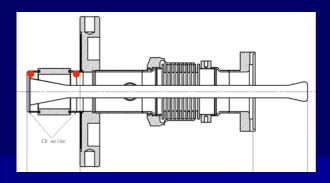
Materials for motorized actuator

Actuator Materials List				
Description	Base Material	Coating	Additional Material	
front endbell	aluminum	Electrophoresis Coating		
rear endbell	aluminum	Electrophoresis Coating		
ball bearing	52100 chrome steel		Chevron SRI2 lubricant	
linear insert	brass			
linear nut	30% glass filled polyester			
magnet	sintered BdFeB	Electrophoresis Coating		
rotor stack	silicon steel lamination		aluminum rivet	
spring washer	carbon steel			
spanner nut	aluminum	black anodize		
e-ring	spring steel	black phosphate		
captive sleeve	aluminum	black anodize		
molded sleeve	30% glass filled polybutylene terephthalate (PBT)			
end stop	303 stainless steel			
pinion	303 stainless steel			
assembly screw	mild steel	zinc plated		
stator stack	silicon steel lamination			
front stator insulator	Nylon 6			
rear stator insulator	Nylon 6			
lead wire	tin plated copper	polyelethylene insulation		
magnet wire	copper	polyurethane/polyamide		
solder	pure tin solder, resin core 66 flux			
label	mylar		Flexcon V-23 adhesive	
rust inhibitor	LPS 3 heavy duty rust inhibitor			
grease	Perfluoropolyether grease			
threadlocker	Loctite 272			
adhesive	Loctite 496			
adhesive	Loctite E-214HP			

Materials for motorized actuator

New Materials proposed for 1 MGy radiation dose:

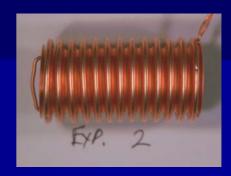

→ Tooling cost ~ 7000 \$



Description	Base Material	Coating	Additional Material
front endbell	aluminum	Electrophoresis Coating	
rear endbell	aluminum	Electrophoresis Coating	
ball bearing	52100 chrome steel		Mineral oil lubricant
linear insert	brass		
linear nut	30% glass filled polyester		
magnet	sintered BdFeB	Electrophoresis Coating	
rotor stack	silicon steel lamination		aluminum rivet
spring washer	carbon steel		
spanner nut	aluminum	black anodize	
e-ring	spring steel	black phosphate	
captive sleeve	aluminum	black anodize	
molded sleeve	Glass filled polyester (tooling \$\$)		
end stop	303 stainless steel		
pinion	303 stainless steel		
assembly screw	mild steel	zinc plated	
stator stack	silicon steel lamination		
front stator insulator	Glass filled polyester (tooling \$\$)		
rear stator insulator	Glass filled polyester (tooling \$\$)		
lead wire	tin plated copper	polyimide insulation	
magnet wire	copper	polyimide insulation	
solder	pure tin solder, resin core 66 flux		
label	Remove label: stamp mounting plate		No adhesive
rust inhibitor	LPS 3 heavy duty rust inhibitor		
grease	Apiezon L grease		
threadlocker	Loctite 638		
adhesive	Loctite 638		
adhesive	Loctite E-214HP: this is an epoxy resin		

Joining techniques

- Proposal 1
 - Joining done as for TTF3 couplers baseline:
 - Stainless steel parts: TIG welds
 - > Cu to stainless, Cu to ceramics: vacuum brazing
 - Final joints by EB-weld
- Proposal 2
 - Final assembly by TIG welding:
 - > Stainless steel parts: TIG welds
 - Cu to stainless, Cu to ceramics: vacuum brazing
 - Final joints by TIG weld
- Proposal 3
 - All metallic joints are brazed under vacuum:
 - ▶ Brazing to bellows → problem of annealing bellows
 - Cu to ceramics: vacuum brazing
 - Final joints by brazing → problem of Ti diffusion into ceramic



Cu coating

- Different processes are proposed for electroplating:
 - DC current
 - pulsed current power supply
- Different bath types are investigated:
 - acid bath
 - cyanide bath
 - sulfate bath
 - pyrophosphate bath
- samples received by LAL to measure RRR

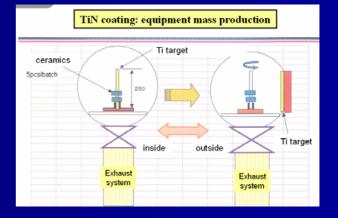
Before baking: RRR = 22

After baking 2h at $400^{\circ}C$: RRR = 63

10

TiN coating

→ 2 different processes are proposed:


vacuum evaporation techniques using equipment of same design as at DESY

- deposit of Ti, then transformation into TiN by introduction of NH3 gas
- or direct deposit of TiN: evaporation of Ti in N2 atmosphere

→ sputtering process: under N2+Ar pressure ____

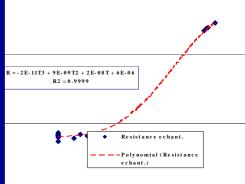
→ Equipment are being assembled, 1st tests soon

Validation samples and tests

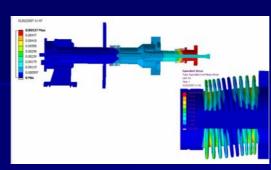
- → Manufacturing techniques:
 - · tube pull out for e- pickup and pumping ports
 - deep drawing for conical part

- → TIG welding:
 - · Validate TIG welds from outside
- → Vacuum brazing:
 - He leak test $< 10^{-10}$ Pa m³/s
 - pull tests on window assembly

OK if $\sigma_{\rm m} > 100 \text{ MPa}$

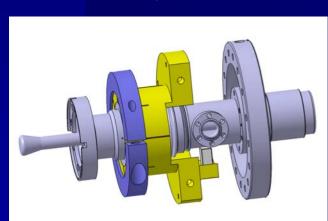

12

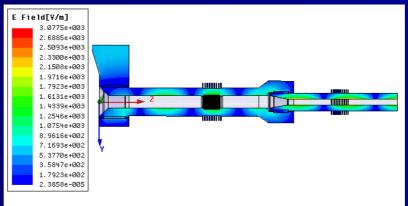
- → Cu coating:
 - adhesion test
 - thickness uniformity measurements on bellows
 - · RRR measurements

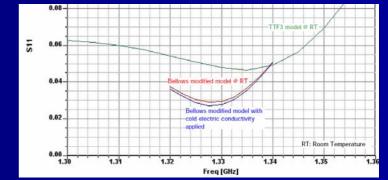

→ TiN coating:

- · layer thickness and stoichiometry
- \cdot ϵ_{R} and tand measurements on ceramic

TTC Meeting 23-26 April 2007


Some work results





Warm window sample

Sliding support

13

Project Reviews for industrial studies

1 - System Design Review

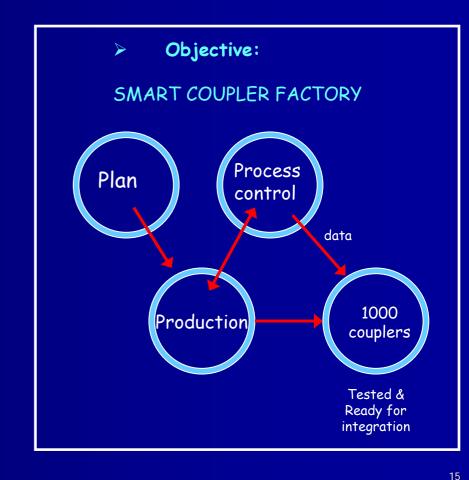
- → Make sure that:
 - requirements are well understood
 - efforts are in the right direction
 - the industry puts the right amount of resources
 - the schedule is controlled
- → Finalize Technical specifications
- → Identify the problems
- → Evaluate the feasibility of proposed solutions

2 - Preliminary Design Review

- Demonstrate the compatibility of the proposed design with the original needs
- Explain how the mass production will be managed, organized, controlled
- Prove the feasibility of manufacturing processes and sequences
- Deliver models and samples for joining, materials, manufacturing techniques, Cu coating

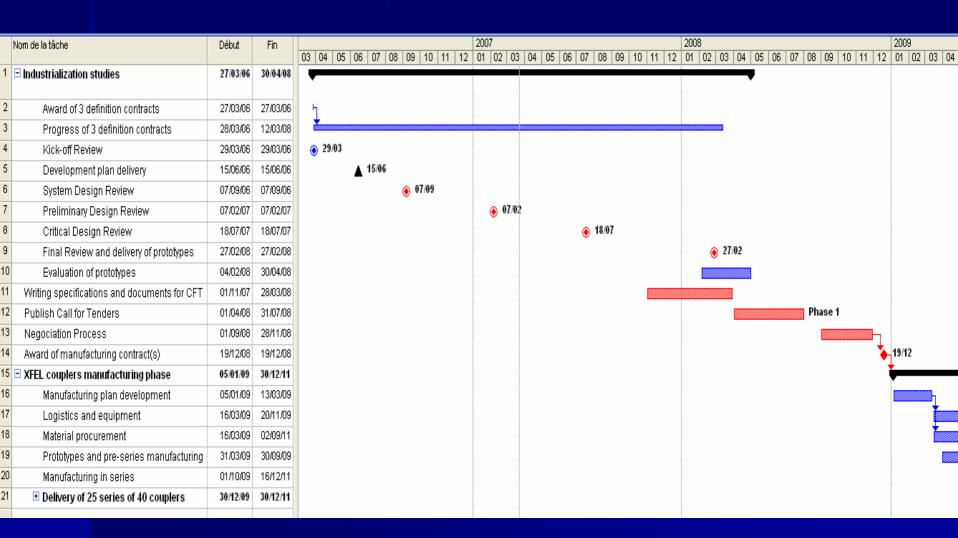
14

TTC Meeting **FNAL** 23-26 April 2007


Project Reviews for industrial studies

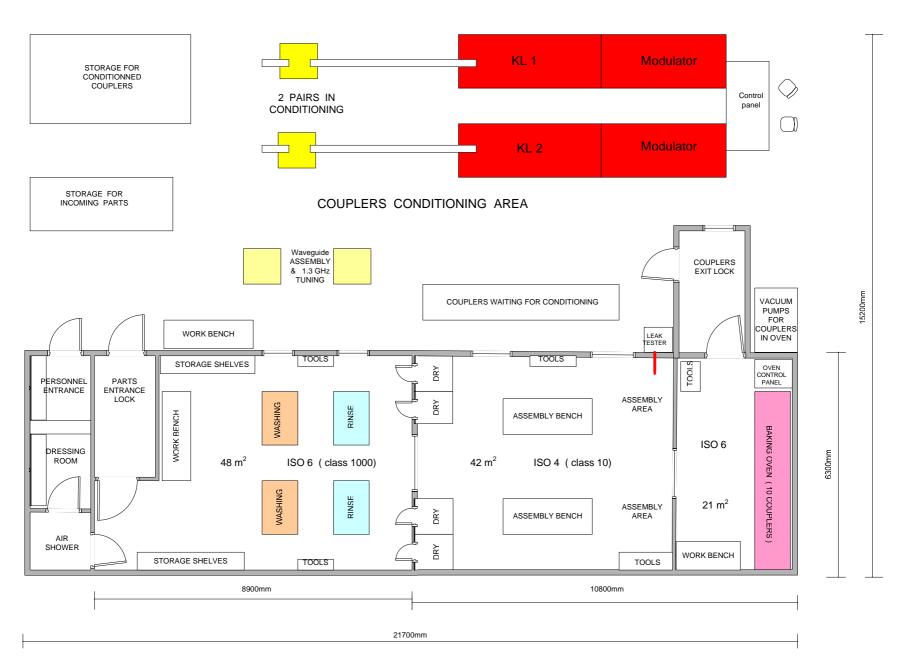
3 - Critical Design Review

- Provide final Validation samples of Cu plating and TiN coating
- Finalize PBS, WBS and all processes for volume manufacturing
- Establish detailed drawings and bill of materials
- · Manufacturing plan for 2 prototypes
- Update the Assembly plan for volume production
- · Clean room layout and equipment
- · Quality Control Plan for volume manufacturing


4 - Final Review

- Deliver 2 prototypes with control data
- Volume manufacturing plan
- Configuration control plan
- Final risks analysis
- Cost estimate for XFEL couplers
 - > fixed costs
 - > recurrent costs
 - > large equipment costs

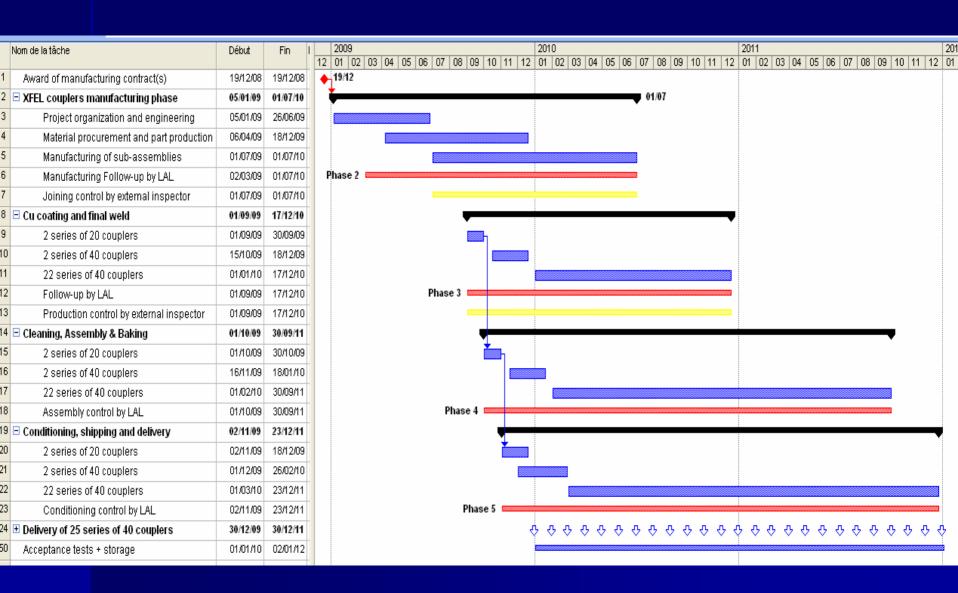
Schedule of « Industrialization studies »


Contract(s) for manufacturing the 1000 power couplers for XFEL will be awarded in 2008

- > Call for tenders for production of XFEL couplers will be initiated mid 2008, based on functional specifications
- → Negociation procedure: both on technical content and on price

Evaluation of tenders will include:

- Technical content
- Production schedule
- Price
- Technical audit of candidates:
 - Expertise in the domain
 - Previous experience with couplers
 - Manpower and equipment
 - Logistics
 - QA audit wrt ISO 9001:2000
- Risks analysis: technical & financial



4

CLEAN ROOM FOR XFEL COUPLERS ASSEMBLY (1 PAIR / DAY)

Schedule of « Production of Power couplers for XFEL »

Industry follow-up tasks to be done by LAL

Phase 2: Manufacturing of parts and sub-assemblies

Phase 3: Cu + TiN coating and final joining

· Check project organization at industry

verify manufacturing drawings

 control procurements: raw material, subcontractors

· check manufacturing plan

· check joining processes (welding, brazing)

• RRR measurements on samples

test final joining on samples

At LAL

· Quality parameters control

schedule control

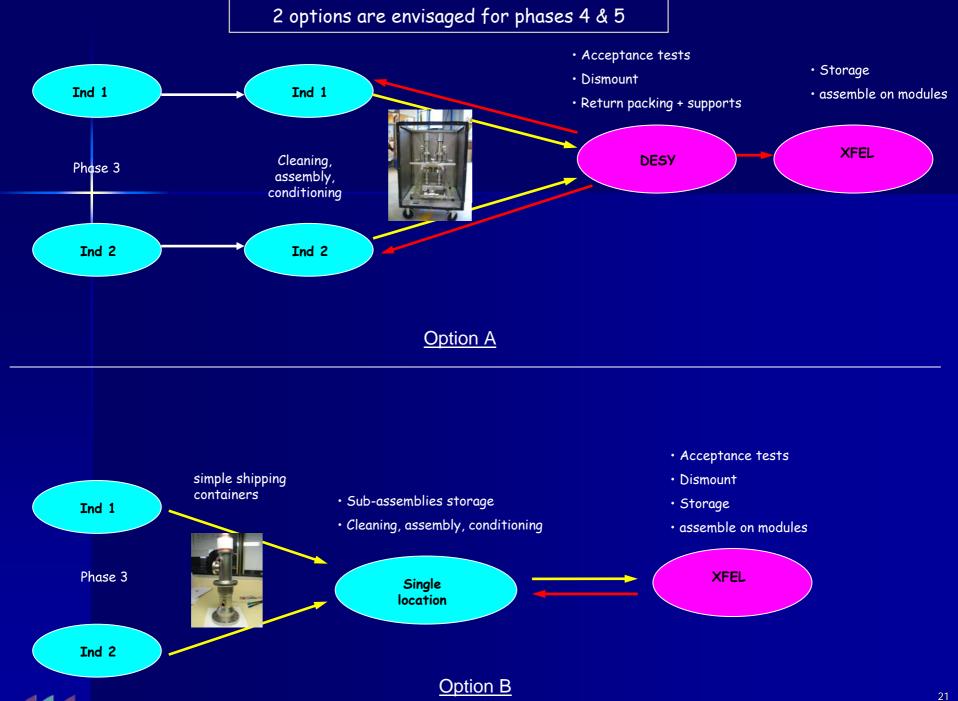
documents control

· collect data and watch drift

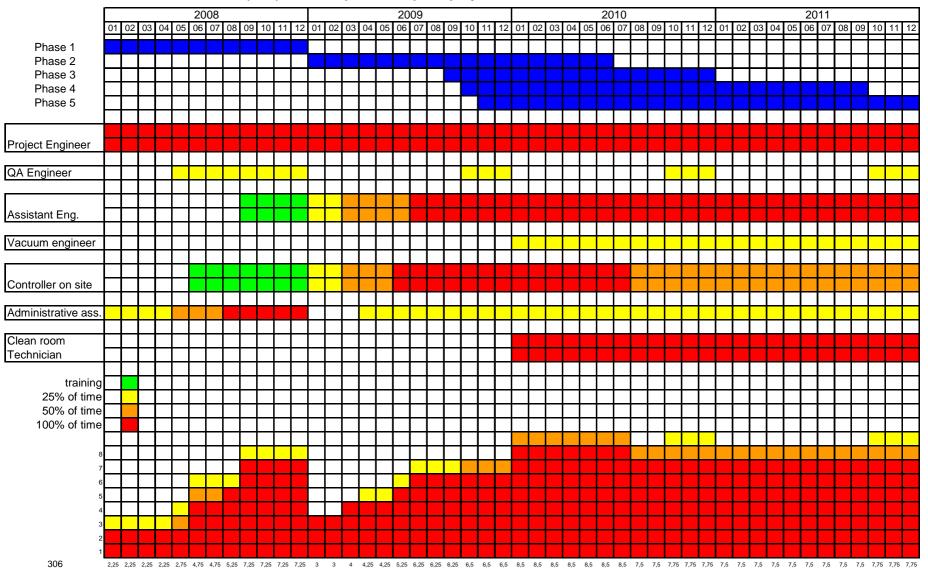
invoices control

report to XFEL project group

At Industry control manufacturing process:
 Witness points, Hold points


· collect data

Project reviews


control Cu coating process parameters

· control final joining process: H points

collect data

Personnel resources (LAL) for XFEL power couplers project

FTE: 306 / 12 = 25,5 man x year

S. Prat TTC Meeting FNAL 23-26 April 2007

22