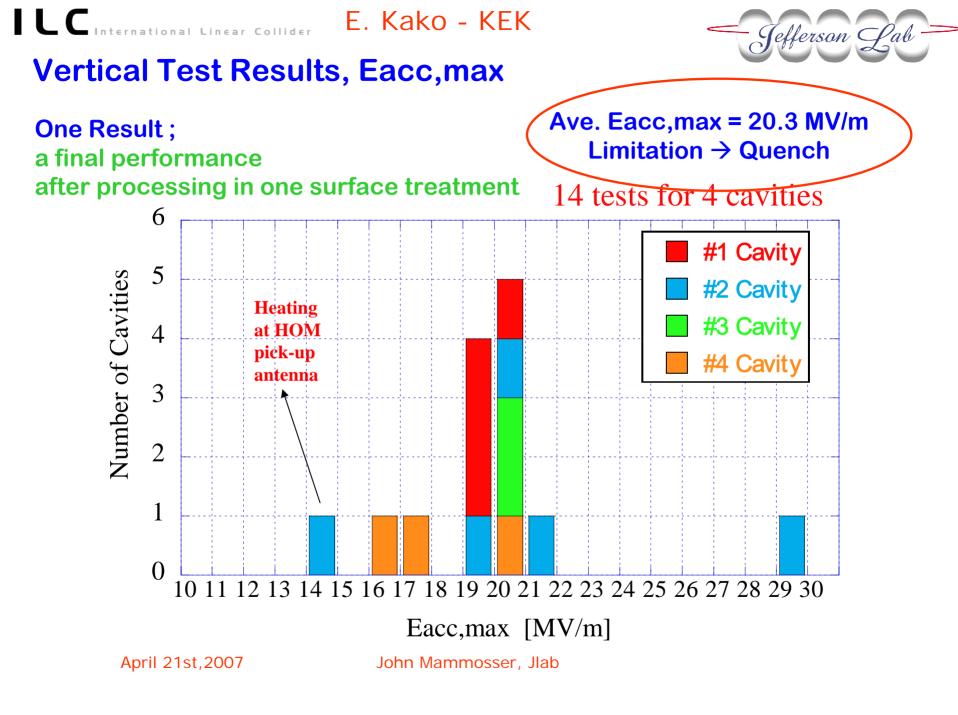


WG2: Summary EP, new treatment infrastructure Conveners: H. Padamsee, K. Saito, J. Mammosser

Conclusions:

- At Frascati TTC meeting we identified many new rinsing / cleaning methods after EP to reduce field emission – list generated
 - At KEK TTC meeting we focused efforts on two areas, one QA of electrolyte and second was basic study reducing spread in performance (better rinsing methods)

 At FNAL TTC meeting – results from both rinsing methods and better QA were presented Now a better understanding is emerging



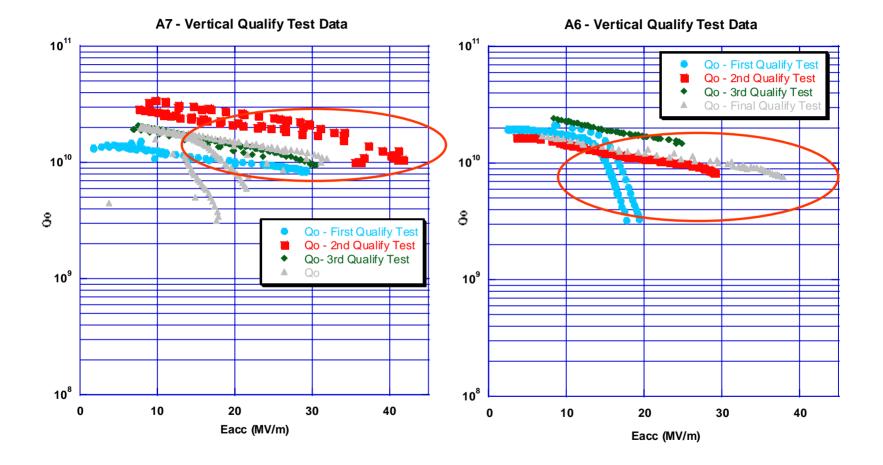
Progress towards S0:

KEK:

- One group -14 Vertical tests completed
- Results gradients are limited by quenches around 20MV/m and one reached 28.5MV/m
- Limits were diagnosed with thermometry each test
 - Quenches equator welds EBW?

KEK just starting with tight loop studies, new cavity processing facilities under construction and will be completed June or July

Progress towards S0:


JLab:

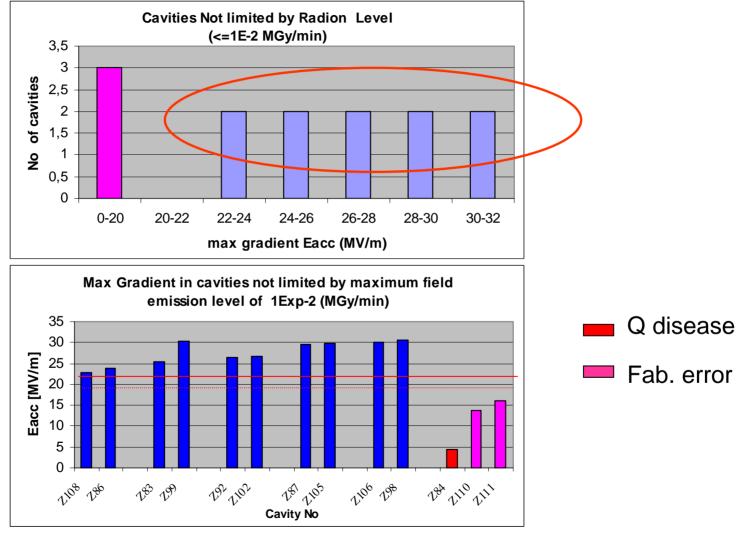
- 11 Vertical tests completed
- Tight loop process fully underway
- Much reduction in field emission below 30MV/m
- Two cavities qualified for S0 31.8MV/m and 38MV/m
- Highest gradient greater than 40MV/m
- Currently qualifying new USA cavity vendor

Great start towards SO, successfully implemented degreasing method to remove sulfur after EP

Large distribution of quenches!!

April 21st,2007

John Mammosser, Jlab


Progress towards S0:

- DESY started acceptance testing for XFEL
 - Eacc > 25 MV/m
 - Radiation level < 1Exp-2 mGy/ min
- High success rate with modified procedures
 - EP / Alco rinse/ bake 3 (3)

ILC International Linear Collider Axel Matheisen - DESY

Details on Results

April 21st,2007

John Mammosser, Jlab

Summary of 9-Cell Testing:

JLab:

- 11 Vertical tests completed
- Only one limited by field emission
- Large distribution of quenches even with repeated tests of same cavity

Single cell efforts:

Saclay – developed a nice single cell EP system for basic studies

- Promising result with alcohol rinising
- DESY dedicated study for XFEL program
 - Single crystal results are good 42MV/m
- KEK concentrated on ILC process development
 - Reduction of scatter
 - Fresh EP method 4% scatter
 - Reduction of Multipacting demonstrated
 - Analysis of F⁻ during process (Nomura Plating/KEK)

Saclay single cell EP-Fabien Éozénou

April 21st,2007

ILC

John Mammosser, Jlab

So Single Cell Study @ KEK on 21 Apr 2007 K. Saito

	Eacc,max [MV/m] / Qo @ Eacc,max									Emax	Scatt.		Acceptability @
	IS#2	IS#3	IS#4	IS#5	IS#6	IS#7	IS#8	CLG#1	CLG#2	average [MV/m]	[%]	MP	40M V/m [%]
CBP+CP+AN+EP(80)+HPR+ Bake	36.9	31.4	45.1	44.2	48.8	28.3				39.1 ± 8.2	21	Yes	50
	1.53E1 0	8.66E9	9.07E 9	5.38E9	9.64E9	1.94E9							
CBP+CP+AN+ EP(80+3 fresh) +HPR+Bake		42.0	46.1	44.3	34.3	39.3			43.8	41.7 ± 4.4	11	Yes	67
		9.72E9	9.47E 9	1.08E1 0	8.56E9	1.03E1 0			3.46E9				
CBP+CP+AN+ EP(40+3 fresh) +HPR+Bake	43.9						49.2*			46.6 ± 3.7	8	Yes	100
	9.47E9						4.33E9						
+EP(20)+HPR+Bake	47.2	52.2	52.9	31.1	48.9	46.5				46.4 ± 8.0	17	Yes	83
	5.98E9	1.51E1 0	5.23E 9	5.21E9	7.56E9	9.03E9							
+EP(20+3 fresh)+HPR +HF+Bake	47.1	44.7	47.8		48.6	43.9		47.9		46.7 ± 1.9	4	Yes	100
	1.06E1 0	9.80E9	7.80E 9		8.00E9	1.17E1 0		1.00E1 0					
+EP(20)+H ₂ O ₂ +HPR+ Bake	52.3			34.1	43.4	40.9				42.7 ± 6.0	18	Light	50
	1.09E1 0			1.37E1 0	1.39E1 0	3.01E9							
+EP(20)+Degreasing (US)+HPR+ Bake	50.1	52.2								51.2 ±1.5	2.9	Light s	100
	7.80E10	7.08E9											
Others Megasonic													

April 21st,2007

John Mammosser, Jlab

IS: Ichiro center cell shape, Tokyo Denkai polycrystalline Nb material CLG: NingXia Large grain, Ichiro center cell shape

Conclusions:

- Control of field emission being addressed differently at each lab
 - Degreasing at JLab
 - BCP+Alcohol rinse at DESY
 - Fresh Acid +Ozone water rinse at KEK
 - Limited success so far
 - Field emission has been reduced (JLab above 30MV/m) but not eliminated
 - There is a possibility that even small amounts of x-rays could be the cause of the early quenches?

Need a consistent approach to addressing field emission and currently not one single method has enough evidence to support global implementation This should be our highest priority!!

Conclusions:

- Quench limits ?
 - In most cases quenches are reached in vertical qualifying tests –good news!
 - What is disturbing is the spread in performance and the majority are below ILC specifications
 - It is not clear that we understand what these limits really are (MP? or FE induced) and there is an inconsistent approach in the testing methods to quantify this type limit
 - Some using T-maping
 - Some established complicated and long processing times
 - Some have done little to understand (myself)

Need to focus effort on better understanding of mechanism and possible develop solution (new cleaning method?)