EP facility at KEK

TTC Meeting at FNAL in April 25,2007

Kenji Ueno

KEK

Contents

- 1. Why EP facility at KEK?
- 2. Concept of EP facility at KEK
- 3. Cavities to be processed at this new EP Facility
- Layout of Electro-polishing (EP),
 Clean room and High-Pressure Rinsing (HPR)
- 5. Cavity Flow—2nd Floor
- 6. Schedule of EP system (draft)
- 7. EP Facilities
- 8. Summary

1. Why EP facility at KEK?

- 1. Critical facility to electro-polish the inner surfaces of cavities for high gradient (35 to 45MV/m).
- 2. Desirable to consolidate all relevant surface treatment facilities at KEK, for consistent and reliable cavity performance.
- 3. EP facility at KEK allows us to maintain a clean room and HPR in a close neighborhood for reliable cavity system performance after assembly.
- 4. We would like to construct the model system as a new EP Show-case on EP to industrialize manufacturing of cavities.
- 5 . More issues for future , for example performance, safety, management and improvement are discussed among staff in KEK. → Establishment of EP committee

2. Concept of EP facility at KEK

- Safety as number one priority. Compliance to all national, local government and KEK-internal regulations.
- Treatment of chemicals:
 - Acid waste → out-sourcing
 - Waste water → at KEK
 - Exhausted gas → at KEK with scrubber
- Floor level, no pit
- R&D prototype
- Model-room / Show-case of EP
 - Scale = lab.level (i.e. not industrial mass-capacity), but
 - Latest technologies and equipment
 - Clean atmosphere
 - Semi-automated procedures

3. Cavities to be processed at this new EP Facility

Cavities to EP-process --Blue items are ILC cavities

- 1. Single cell Nb cavity & parts of cavities
- 2. 9-cell Nb cavity ILC1300MHz 1300mm×Φ210mm
- 3. Single cell Nb cavity 500MHz 800mm×Φ520mm
- 4. Crab Nb cavity 1500mm×Φ520mm

Target capacity = one cavity per week, by 2008

4. Layout of Electro-polishing (EP), Clean room and High-Pressure Rinsing (HPR)

West side of STF Building

4. EP Layout --Overview

4. EP Layout—1st Floor

4. EP Layout—2nd Floor

5. Cavity Flow—2nd Floor

5. Carry in Place of Cavity from outside

5. 2nd Floor & EP Bed

5. EP Bed & Rectifier

Rectifier at 1st floor: $100 \sim 1000 A$, $5 \sim 50 V$

6. Master Schedule of STF

6. Schedule of EP system (draft)

1. Ultra Pure Water Equipment

Capability : 0 . 6 m 3 (1.5 $^{\circ}$ C) /H 、Resistance > 18.0M Ω

Number of particles<10 p /cc: size 0.1μm Number of bacteria<5p/cc,TOC10μgC/ℓ

7. E P Reserve Tank —— Height 1 5 0 0 mm,

Base height 5 0 0 mm, Diameter 1 3 0 0 mm, Capacity 1.

7. HPR & the tilting table

HPR—— 2 m× 2 m× 5 mHeight、Class of clean room: 1 0

7 . Scrubber & Cold water tank

——Space of layout: 5 . 3 m×1 0 m capacity: 2 5 m³ /min

8. Summary

- We have reported the concept and construction status for
 - The new EP system at KEK
 - The HPR that associated with the EP system.
- These facilities are expected to serve as
 - Work forces for the ILC-related cavity related activities at KEK, and as
 - A model room for facilitating industrialization of the cavity manufacturing process.