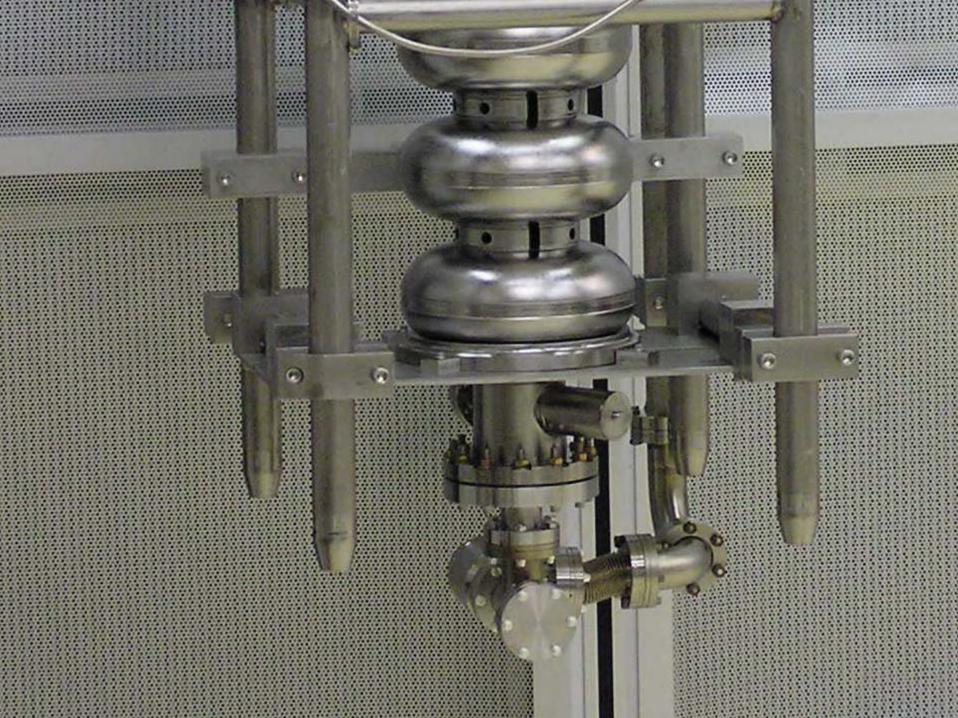


ILC Cavity Qualifications- Americas J. Mammosser (JLab) D. Bice (FNAL)


R. Afanador (JLab)

Outline:

- Procedures for Cavity Qualification at JLab
 - Process Algorithm Used
 - Resulting Production Schedule
 - Limitations to production rate
- Cavity Performance
 - RF Test Data
 - Field Emission Data
 - Material Removal Data
- Production Issues to Address
- Technical Questions?

- Chemistry for Vertical Qualification
 - Degrease (1 hr) 150KHz ultrasonic with DI + 1 liter Micro-90 + DI rinse + Dry
 - EP 20um (1 hr) starting at 17V, 10 lpm fill, 1rpm rotation
 - Adjusting voltage to maintain acid temperature at exit below 35C
 - Followed by:
 - DI rinsing = 6 fill & dumps + 1 hr overfill
 - Horizontal removal of cathode
 - Flange cleaning
 - Transfer to chemroom
 - Degrease (1 hr) 150KHz ultrasonic with DI + 1 liter
 Micro-90 + DI rinse + pass into Cleanroom

- HPR (12 Hrs) 1200-1300psi Pressure, 2 fan jet nozzles, LEWA pump, Top beamline flange blanked
 - Wand Cycle:
 - Move to top
 - Lower after full rotation 0.2 inches and repeat until reaches bottom
 - Drain 15 minutes
 - Repeat
 - Blank all flanges and transfer to Class 10 to dry
- Dry (8hrs)
 - All flange blanks removed
 - All flanges covered before any work in Class 10 area

- First Assembly (4 Hrs)
 - All components nitrogen gun cleaned
 - Assembly of components from below cavity positioned and rotated as necessary
 - Only minimal bolts added (2 typically) to seal flanges
 - Field probe transition
 - FPC transition
 - HOM blanks
 - Top Beamline flange
 - Bottom beamline flange blanked
- Second HPR (12hrs)
 - Bottom beamline blank removed
 - HPR same as first time

- Second Assembly (4 hrs)
 - All components nitrogen gun cleaned
 - Assembly of components from below cavity positioned and rotated as necessary
 - Only minimal bolts added (2 typically) to seal flanges
 - Field probe
 - Input Probe (FPC port, fixed coupling)
 - Valve flange assembly
- Evacuation + Leaktest (3-4 hrs)
 - 60 lps turbo backed by scroll pump
 - Cold trap removed after reaching E-6 mBar
 - RGA leak test gross spray of all components
 - Leak detected letup, second HPR and assembly repeated
 - Pressure usually E-7 mBar

- Bake out (52 hrs) 110C forced hot nitrogen in bake-out box
 - 2 hr ramp up
 - 48 hr soak
 - 2 hr ramp down
 - Pressure usually mid E-9 mBar
 - Transfer into Dewar
- RF Test (2-8Hrs)
 - Cool-down, fill and pump to 2K
 - RF test
 - Pass-band measurements if necessary
 - Q-disease test at least once after bulk chemistry
 - Warmup
 - Transfer to cleanroom and disassemble

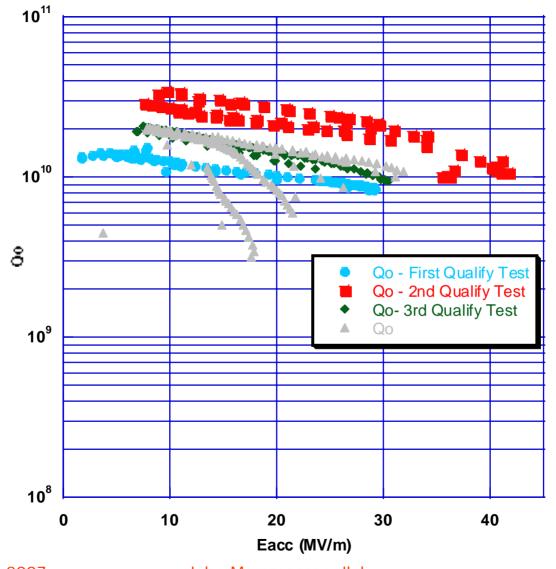
Subcomponent Cleaning

- All Hardware, flanges and subcomponents completely disassembled
- Ultrasonic degreasing with micro-90 and DI 30min
- Di rinsing
- Small Hardware
 - Nitrogen gun drying
 - Bagging
 - Transfer to cleanroom
- Flanges and transitions
 - Pass-thru to cleanroom in DI water bath closed container
 - In cleanroom remove from water bath nitrogen gun blow dry
- All hardware in cleanroom
 - Ionized nitrogen gun cleaned to particle count >10, 0.3um
 - Repeated at each assembly step

Resulting Production Schedule:

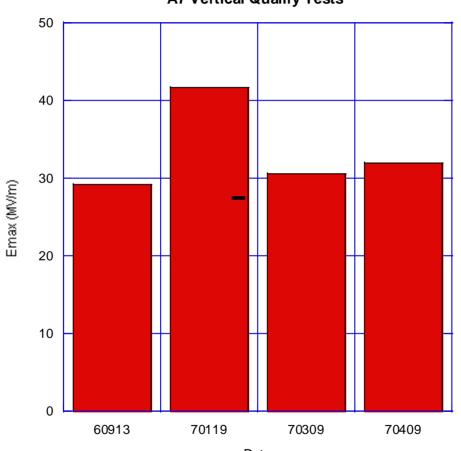
- Two process cycles every two weeks
 - Mon C1 setup Ep
 - Tues C1 Process/Degrease/HPR
 - Wed C1 Assembly/HPR, C2 setup Ep
 - Thurs C1 Assembly/Evac/Leaktest/Bake, C2 Process/Degrease/HPR
 - Fri C1 Bake, C2 Assembly/HPR
 - Mon C1 insert into dewar, C2 Assembly/Evac/Leaktest/Bake
 - Tues C1 Rf test, C2 Bake
 - Wed C1 transfer/Warmup, C2 Bake
 - Thurs C1 disassembly, C2 insert into dewar
 - Fri C2 Rf test, C1 setup Ep

Resulting Production Schedule:


- We have successfully established a rate equivalent to 50 cycles per year with 3 FTE's and hardware for two cavities
- Limitations:
 - With only two cages we could not go any faster (third cage almost complete)
 - Facility availability
 - Improved communication
 - Established shift work to reduce facility conflicts
 - Delays encountered
 - Facility failures (Scrubber ect)

Results so far:

- 11 ILC cavities tests performed
 - Easily reach the 30 scheduled test cycles this FY
- 1 Single cell baseline test completed
 - Easily reach the 10 planned tests this FY

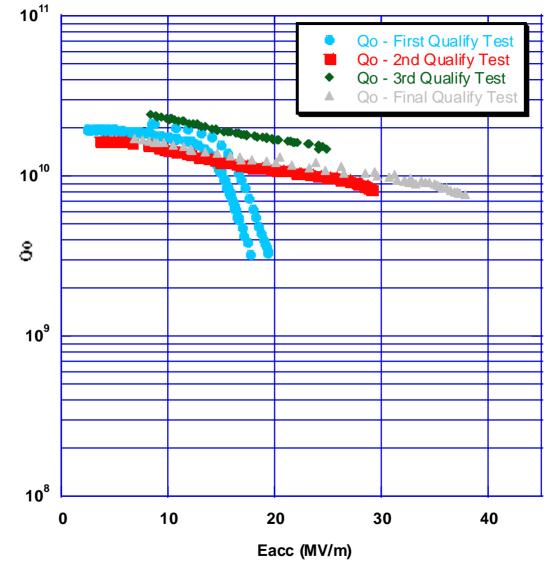


April 6th,2007

ILC International Linear Collider

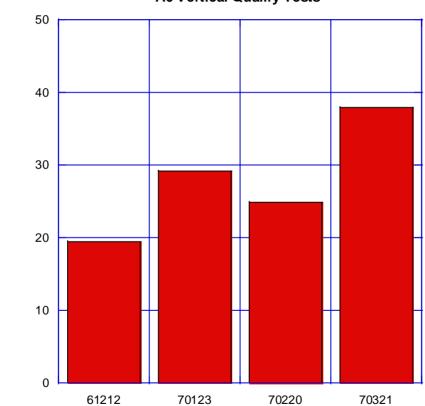
A7 Vertical Qualify Tests

Date



Material Removal Data: Equators

A7	FPC								Fp
	1	2	3	4	5	6	7	8	9
As received	3.007	2.952	2.976	3.016	2.963	2.913	2.938	2.977	2.975
After Bulk	2.836	2.789	2.813	2.853	2.782	2.734	2.761	2.813	2.798
	171	163	163	163	181	179	177	164	177
After 2nd	2.811	2.765	2.784	2.825	2.751	2.709	2.73	2.789	2.783
	196	187	192	191	212	204	208	188	192
After 4th	2.756	2.704	2.73	2.768	2.694	2.658	2.682	2.732	2.726
	251	248	246	248	269	255	256	245	249

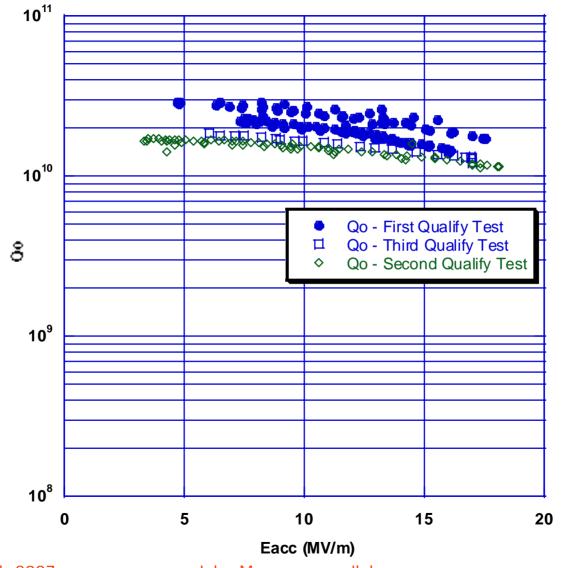


April 6th,2007

A6 Vertical Qualify Tests

Date

April 6th,2007


Emax (MV/m)

Material Removal Data: Equators

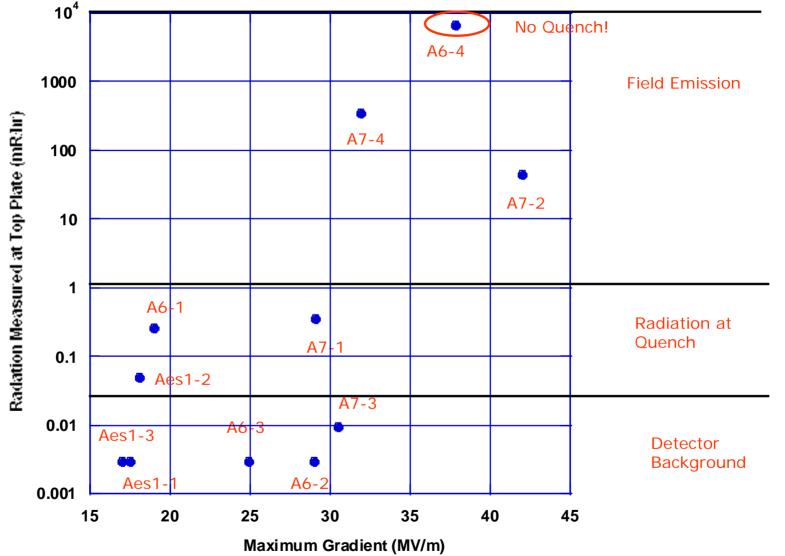
A6	FPC				-				Fp
	1	2	3	4	5	6	7	8	9
As received	2.974	2.95	3.002	3.042	2.921	2.946	2.973	3.07	3.015
After 1st	2.792	2.789	2.818	2.852	2.73	2.748	2.78	2.871	2.824
	182	161	184	190	191	198	193	199	191
After 2nd	2.773	2.76	2.792	2.83	2.706	2.711	2.758	2.849	2.795
	201	190	210	212	215	235	215	221	220

AES - Vertical Qualify Test Data

April 6th,2007

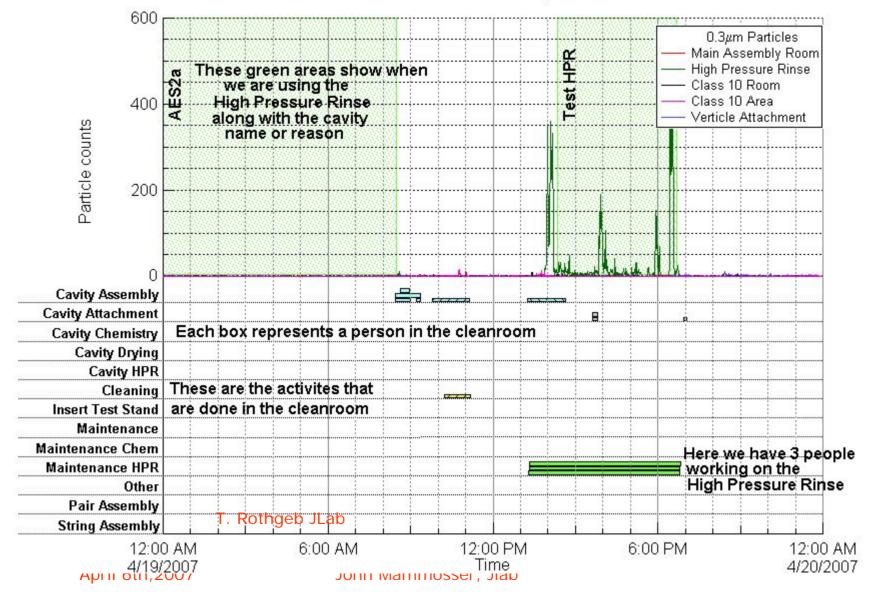
Analysis of Stored Energy Sqrt(P*Q) for AES1 Test #2

	FPC								
Mode	Cell1	Cell2	Cell3	Cell4	Cell5	Cell6	Cell7	Cell8	Cell9
9	34.3	-34.3	34.3	-34.3	34.3	-34.3	34.3	-34.3	34.3
8	43.0	-37.8	28.1	-14.9	0.0	14.9	-28.1	37.8	-43.0
7	38.5	-20.5	-7.1	31.4	-40.9	31.4	-7.1	-20.5	38.5
6	32.6	0.0	-32.6	32.6	0.0	-32.6	32.6	0.0	-32.6
5	31.6	20.6	-38.7	-7.2	41.2	-7.2	-38.7	20.6	31.6
4	37.7	50.8	-20.1	-57.8	0.0	57.8	20.1	-50.8	-37.7
3	21.4	42.9	21.4	-21.4	-42.9	-21.4	21.4	42.9	21.4
2	12.2	30.9	35.2	23.0	0.0	-23.0	-35.2	-30.9	-12.2
1	7.8	22.3	34.2	42.0	44.6	42.0	34.2	22.3	7.8



Material Removal Data: Equators

AES1	FPC								Fp
	1	2	3	4	5	6	7	8	9
As received	3.403	3.317	3.305	3.295	3.306	3.321	3.33	3.309	3.304
After bulk	3.262	3.155	3.163	3.143	3.163	3.183	3.199	3.165	3.163
	141	162	142	152	143	138	131	144	141
After 1st	3.212	3.13	3.129	3.12	3.122	3.136	3.147	3.132	3.117
	191	187	176	175	184	185	183	177	187
After 2nd	3.17	3.091	3.077	3.051	3.053	3.066	3.094	3.072	3.068
	233	226	228	244	253	255	236	237	236


Radiation Summary for All Qualifying Tests

Cleanroom Particles & Activity 4/19/2007

30 Elements in UPW by ICP-MS

FINAL FILTER

1/25/2007

HPR ON 1/25/2007

Units: ppt (ng/L)	
Aluminum (Al)	
Antimony (Sb)	
$\Delta m = 2m \ln (\Delta m)$	

Aluminum (Al)	3	*	*
Antimony (Sb)	2	*	*
Arsenic (As)	5	*	*
Barium (Ba)	1	*	*
Bismuth (Bi)	1	*	*
Boron (B)	50	73	73
Cadmium (Cd)	3	*	*
Calcium (Ca)	200	*	*
Chromium (Cr)	4	*	*
Cobalt (Co)	1	*	*
Copper (Cu)	3	*	*
Gallium (Ga)	2	*	*
Germanium (Ge)	3	*	*
Iron (Fe)	20	*	*
Lead (Pb)	3	*	*
Lithium (Li)	2	*	*
Magnesium (Mg)	2 2	*	*
Manganese (Mn)	2	*	*
Mercury (Hg)	20	*	*
Molybdenum (Mo)	4	*	*
Nickel (Ni)	4	*	*
Potassium (K)	100	*	*
Silver (Ag)	1	*	*
Sodium (Na)	7	*	*
Strontium (Sr)	1	*	*
Tin (Sn)	5	*	*
Titanium (Ti)	2	*	*
Tungsten (W)	5	*	*
Vanadium (V)	3	*	*
Zinc (Zn)	5	*	*
		с I I	

* = Analysis revealed that the analyte was not found at or above the reporting limit. RL = Reporting Limit

	4		FINAL FILTER 1/25/2007
		HPR ON	1/23/2007
		1/25/2007	
Units: ppb (ug/L)			
Silica, LL dissolved	0.1	0.2	0.2
Total Silica			
			FINAL FILTER 1/25/2007
		HPR ON	
		1/25/2007	
Units: ppb (ug/L)			
Silica, Total	0.5	*	0.6
Anions by IC (UltraPure)			
			FINAL FILTER
			1/25/2007
		HPR ON 1/25/2007	
Units: ppb (ug/L)			
Fluoride (F-)	0.03	*	*
Chloride (Cl-)	0.02	*	*
Nitrite (NO2-)	0.02	*	*
Bromide (Br-)	0.02	*	*
Nitrate (NO3-)	0.02	*	*
Phosphate (HPO4=)	0.02	*	*
Sulfate (SO4=) 0.05 * *	- +:	(1114	
Monovalent & Divalent C	ations by IC	(UltraPure)	FINAL FILTER
			1/25/2007
		HPR ON	1/25/2007
		1/25/2007	
Units: ppb (ug/L)		17 207 2007	
Lithium (Li+)	0.01	*	*
Sodium (Na+)	0.01	*	*
Ammonium (NH4+)	0.02	*	*
Potassium (K+)	0.02	*	*
Magnesium (Mg++)	0.02	*	*
Calcium (Ca++)	0.02	*	*

Production Improvements Needed:

- Hands free assembly tooling needed for reduction of assembly errors
- Variable coupler for RF testing
- Documentation of procedures and development of working travelers

Questions:

- With the large distribution in performance due to quenches
 - 1. Are these quenches driven by field emission or MP?
 - Or is the limitation a product of each chemistry cycle a real surface feature or texture?
 - Can we characterize the surface each run?
 - Or is the quench caused by contamination on the surface due to improper cleaning?
- Clearly we need more production supportive studies to further improve our understanding and cavity performance!