Comparison of LumiCal Response in Geant3 and Geant4

J. Aguilar, B. Pawlik, L. Zawiejski

IFJ-PAN, Krakow

- Maximum charge deposition
- Moliere radius
- Reconstructing primary particle energy

Geometry

- Sensitive radius:

80-195.2mm
Silicon sensor half plane

- Volumes
- 2 modules
- 30 layers/sector
- 12 tiles/layer
- 4 sectors/layer
- 64 cells/sector
- Non-sensitive space only between tiles

Run parameters

-Particle: e-
-Energy: 250 GeV
-Position: 2.500 m before LumiCal
-Theta: 55 mrad

- Smearing: 0
-Events: 10,000
-Range cuts: $0.005 \mathrm{~mm}, 0.050 \mathrm{~mm}, 0.500 \mathrm{~mm}, 1.000 \mathrm{~mm}$

Range cuts in Geant 4

- Not really a range as much as a threshold in production energy.
- Particles lose energy through secondary production down to an energy corresponding to the cut range.
- Depends on the material
- Particle is STILL tracked down to zero range - the track is not killed, but the range cut-off does affect the accuracy of the stopping position.
- Geant 4 puts a "please" after your range cuts: they are a suggestion.
- Geant 3 sets a hard limit - particles are not tracked below their production threshold. Floor of 10 KeV

Charge Deposited

Range Cut trends

Moliere Radius

Range Cut trends

Reconstructing Energy: Raw Energy Deposit

Range Cut trends

Reconstructing Energy: Correction Factor $=\frac{E_{\text {lnput }}}{E_{\text {Dep }}}$

Reconstructing Energy:

$\overline{C F} \cdot E_{D e p}$

Range Cut trends

Energy Resolution

Summary

- Geant 3 and Geant 4 don't always agree, and they disagree in different ways:
- Energy resolution: very different values
- Charge deposition: different shapes
- Perhaps this can be entirely accounted for by the difference in treating range cuts, nevertheless:
- We need to be aware of how well the simulation approximates reality!
- Unfortunately, the only time we will know for sure which parameters give the best results is when the detectors are already in the test beams.

