Comments on
Niobium RRR an
SRF cavity perfarm

forAEC

€

»
»e
.y

bo (KEK & visiting™faculty at ODU)
dby A }’amamoto (KEK & CERN)

e Physics News and Resources, http://www.intera org/cms/?p



® We roughly estimates the quench fields as a
function of RRR-

® The purpose is not to build a fundamental
theory or to present quantitative
simulations,

®but s to provide scientific basis to discuss
specification of RRR in the context of cost
reduction-
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* The world record is around 200mT. However, | do not know its RRR value, and could not plot them here.
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RRR = 200 /s enough for ILC?



Why do we use high purity
Nb materials?

There are two reasons: we need

® Higher H., to prevent vortex
penetration

® Higher thermal conductivity for
thermal stabilization

These values can be expressed with RRR-



Screening Test #T
The lower critical field H,,




1. H,, of Nbis obtained by GL formula at T~T_ [E. H. Brandt, Phys. Rev. B 68, 054506 (2003)].
Extrapolate it to T<<T_, which agrees well with experimental data at T=0 if kg, < 2.

3. Based on the BCS theory, express ks, with microscopic parameters such as &g and mfp (/ ), and express
mfp with RRR. (see Appendix)

N

4. We obtain H_, as a function of RRR. f (nm)
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| know the world record is ~200mT, which is larger than B, by 20%. Thus, in the later analysis, we assume the
maximum field is around B_, — 1.2*B_,



RRR 50 is necessary for ILC

Ve obtaln H_4 as a tTunction OT KRK. f (m“)
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RRR 50 is necessary for [LC

4. Ve obtaln H., as a tunction oT RRR. F {m“)
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We can reconfirm that
N-doped cavities corresponding to

mfp~50nm yield B.,~130mT and thus
cannot pass this screening test:




Screening Test #2

Thermal runaway
for the defect-free case

vacuum He This is a well-studied effect.

® A small temperature rise at the inner
surface due to BCS heating induces
exponential increase of Roc e /T,

® |t further increases the inner temperature.

® This positive feedback causes the thermal
runaway even if any defect does not exist.

RF

Cavity wall




1. The thermal runaway field for defect-free case is obtained by solving the 1D thermal diffusion
equation. [A. Gurevich and G. Ciovati, Phys. Rev. B 87, 054502 (2013)]

Assumptions:

* No phonon peak

e Wall thickness d=2.8mm

* Bath temperature T,=2K

* Kapitza conductance a,=10,000W/Km?

2. Express thermal conductivity with RRR by using [F. Koechlin and B. Bonin, Supercond. Sci. Technol. 9, 453
(1996)]
3. We obtain the thermal runaway field as a function of RRR,
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RRR = 100 /s necessary
when phonon peak is absent
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Assumptions:
No phonon peak
Wall thickness d=2.8mm
Bath temperature T, =2K
Kapitza conductance a,=10,000W/Km?
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The thermal runaway field for defect-free case is obtained by solving the 1D thermal diffusion
equation. [A. Gurevich and G. Ciovati, Phys. Rev. B 87, 054502 (2013)]

Express thermal conductivity with RRR by using [F. Koechlin and B. Bonin, Supercond. Sci. Technol. 9, 453
(1996)]

We obtain the thermal runaway field as a function of RRR.
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Thermal runaway disappeared
when phonon peak is available
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Assumptions:

* Include phonon peak

* Wall thickness d=2.8mm

* Bath temperature T, =2K

* Kapitza conductance a,=10,000W/Km?




Summary of Screening Tests #1 and #2

® /n terms of H.;,, RRR>50 s necessary
® /n terms of thermal runaway,
O RRR>700 js necessary when the
phonon peak is absent
O Arbitrary RRR is OK, when the
phonon peak is available-

® Large grain with phonon peak — RRR>50
® fFine grain — RRR>700

are necessary for [LC-

This is the minimum condition-




Summary of Screening Tests #1

Consistent with experimental data:
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® Large grain with phonon peak — RRR>50

® Fine grain — RRR>700
are necessary for [LC-
This is the minimum condition-




Then,
RRR~300 is too much?

No! Too early to conclude!



Screening Test #3
H., at a heating defect:

Simultaneous test for
H., & thermal conductivity

The temperature rise at a defect

defect
| significantly suppresses H_;,.

Cavity wall
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superconducting precipitates:

Consider defects such as normal conducting contamination or weak

Calculate the temperature rise around the defect, assuming Rs at

deFeCt /.5 gl.Ven by that OF /’lor‘ma/ Nb [G. Muller, in Proceedings of SRF1987, Argonne National

Laboratory,lllinois, USA (1987), p. 331, SRF87C07.

This is much different regime
than the screening test#2-
The temperature rise is local
and huge- The phonon peak
(T<3K) does not play an
important role-
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7- Consider defects such as normal conducting contamination or weak

superconducting precipitates:

2 Calculate the temperature rise around the defect, assuming Rs at

K (W/Km)

deFeCt /.5 gl.Ven by that OF /’lor‘ma/ Nb [G. Muller, in Proceedings of SRF1987, Argonne National
Laboratory,lllinois, USA (1987), p. 331, SRF87C07.  A. Gurevich and G. Ciovati, Phys. Rev. B 87, 054502 (2013)]
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Here we should remind that H., decreases as
the defect temperature increases:
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At B,=B_,(T), Nb material around the
defect transitions from Meissner state
to the vortex state. Thus dissipation
would drastically increase and trigger
a quench or at least a sudden Q drop
at this field: rough estimate of quench
field.

Here we call this field as “estimated
quench field”.

The results are insensitive to whether phonon peak exists or not.
[Phonon peak can change only the T behavior (red curve) at T<3K]
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the defect temperature increases:
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Estimated quench field as functions of

RRR and normal defect size

Other heat sources with the same amount of dissipation as normal defect with the sizes shown here also lead

to the similar_results.
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Estimated quench field as functions of

RRR and normal defect size

Other heat sources with the same amount of dissipation as normal defect with the sizes shown here also lead

to the similar_results.
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Estimated quench field as functions of

RRR and normal defect size

Other heat sources with the same amount of dissipation as normal defect with the sizes shown here also lead

to the similar_results.
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Estimated quench field as functions of
RRR and normal defect size

Other heat sources with the same amount of dissipation as normal defect with the sizes shown here also lead

to the similar_results.
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Summary

® As shown theoretically and experimentally, the ILC spec
can be achieved by RRR>100-cavities, but a defect
prevents achieving ILC spec, where the phonon peak does
not play an important role-

® /n general, there always exist defects that can be
additional heat sources: For example, when a Suym normal
defect exists as shown in the last page, a RRR=300-cavity
may achieve 30-34MV/m, but a RRR=200-cavity cannot:

this defect is acceptable for RRR=300, but unacceptable
for RRR=200-

® /f we decrease RRR, a defect that we have not needed to
care about so far newly becomes a cause of quench below

the ILC spec, regardless of whether the phonon peak exists
or not-



® Thus, naively, we can expect the probability of cavity
exceeding ILC spec would deteriorate as we decrease RRR:

Yet you may need to reduce RRR for the project!
What is the necessary RRR?

® As shown in the final figure, it depends on the defect size,
namely, our quality control! If you reduce RRR, you need
improvement of cavity fabrication technologies to offset
the increasing risk of quench due to RRR degradation-

® Comment: Remind phonon peak can suppress the T
increase if T<3K- In a case that a defect is very small and
always remains T<3K, LG with phonon peak would further
suppress T increase and H,, degradation than FG- Thus
when we want to achieve a very high field >40MV/m, LG

with phonon peak is superior to FG- This superiority will
be discussed somewhere else:




Appendix



H., of Nb as functions of RRR

The GL formula for H,, at T~Tc Is given by
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This formula is not applicable at T<<Tc. So | introduce the following trick.
Since B, does not vary with a density of nonmagnetic impurities, we can write

B, = Bcl/h(h(}h) f‘hﬂan/h(ﬁrlpan) 200i prellmmary
Then we obtain the extrapolation Tormula
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This extrapolation formula agrees well with experimental

data at the parameter region that we are interested in.

The next task is to express k., with mfp. This is obtained
relation between BCS and GL. We have
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The final task is to express mfp with RRR.
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