TESLA TECHNOLOGY COLLABORATION MEETING

FABRICATION AND TREATMENT OF QUARTER-WAVE, HALF-WAVE AND SPOKE-LOADED RESONATORS

Z.A. CONWAY Physics Division Argonne National Laboratory

26 June 2018 Argonne, Illinois 60439

ACKNOWLEDGEMENTS

People who deserve more credit than they receive.

- The TTC Collaboration,
- Mike Kelly, Mark Kedzie, B. Mustapha and Tom Reid (ANL),
- Jean Delayen and HyeKyoung Park (ODU/JLAB),
- Matt Fraser (CERN),
- Chris Compton (MSU-FRIB),
- Naruhiko Sakamoto and Kenji Suda (RIKEN),
- Robert Laxdall and Zhongyuan Yao (TRIUMF),
- Jung Hoe Chun and Dong-O Jeon (RAON),
- Leonardo Ristorri (FNAL), and
- Yuan He and Hao Guo (IMP-ADS).

1.3 GHz TESLA Style 9-cell EP

72.75 MHz QWR EP

OUTLINE

TEM-class cavity fabrication and processing

- Fabrication:
 - design, and
 - practical applications.
- Tuning.
- Processing:
 - methods, and
 - results.
- Quick summary and personal thoughts.

ODU Spoke

H. Park & J. Delayen (ODU) LINAC'14 N. Sakamoto (RIKEN) et al SRF'17

QWR, HWR AND SPOKE RESONATOR DESIGN

TEM-class cavity complexity

- Optimize the standard parameters: E_{peak}, B_{Peak}, G, R_{sh}/Q, etc.
- In parallel with:
 - Beam steering,
 - Cleanability,
 - Ease of etch/polish,
 - Complexity of fabrication, and $\frac{1}{2}$
 - manufacturing limitations.
- Summary, integrate the:
 - EM design,
 - Beam dynamics,
 - Manufacturing and Processing
 - Cryomodule design.

P. Ostroumov et al PRST-AB 4 110101 2001 A Facco and V. Zviagintsev PAC'01 M. Fraser et al PRST-AB 14 020102 2011 B. Mustapha et al IPAC'12 P. Berutti et al IPAC'12

FABRICATION

Introduction

- Design strongly influences fabrication outcome.
- Many trades offs between cost and complexity.
- Defects are caused by fabrication:
 - material,
 - forming,
 - machining,
 - welding,
 - handling,
 - measuring/tuning, and

- processing. Z. Conway TTC 2018 RIKEN

FRIB Nb Inspection @ Vendor

Nb Inspection @ ANL

RESONATOR DESIGN - I

What are QWR, HWR and Spoke-Loaded Resonators

FRIB Quarter-Wave Resonators (QWR)

C. Compton et al SRF'15 Half-Wave Resonator (HWR)

ODU β = 1 Spoke-Loaded Resonator

C. Hopper and J. Delayen PRST-AB 16, 102001 (2013)

FORMING - I

Try not to add anything to the Nb

- Forming well understood for decades.
- Forming Nb parts via deep drawing with strain rates > 180%.
 - Electrohydraulic forming may go farther.

MSU Toroids with Ports

Balloon Spoke Cavity @ TRIUMF

FNAL SSR1 End-Wall Formed From a single Nb Sheet

FORMING - II

Reduce weld area on high field surfaces

- Design for easy of welding.
- Branch pull or burring (RIKEN) to form ports.

TRIUMF Balloon Spoke

ODU 500 MHz Spoke

26 June 2018

RIKEN QWR Ports via Burring

MACHINING

Reduce weld area on high field surfaces

- QWR, HWR and Spoke fabrications create complicated geometries.
- Machining gets you to the end product.
- Conventional and EDM are employed.
- Must be careful to not contaminate weld seams with tooling/debris

Toroid EDM

HIE-ISOLDE QWR off set beam aperture

Beam Aperture Wire-EDM

Beam Aperture Wire-EDM

WELDING

Electron Beam Welding

- 100% Electron Beam Welding.
- Frequently need multi-axis welds:
 - MSU-FRIB Resonators,
 - ODU Spoke Resonators, and
 - ANL Resonators.

Double Spoke EBW @ JLAB

Reentrant Nose Welding

TUNING Full Cavity Mock-Ups

- QWR, HWR and Spoke resonator tuning generally requires machining; parts are not mass produced.
- Same considerations as before.

ODU Double Spoke Tuning

HWR Tuning

PROCESSING

Make the cavity pretty.

- Ultrasonic cleaning, hydrogen degassing, BCP/EP, and HPR.
- Hydrogen degassing is almost universally employed for these cavities @ 600°C for 8-12 hours.
- EP or BCP? Cost and experience driven..
- High Pressure Rinsing (HPR).

HWR H-Degassing @ FNAL

TRIUMF Spoke H-Degassing

H-Degassing @ BNL

BUFFERED CHEMICAL POLISHING

Smooth all over.

- BCP gives good results on QWR, HWR and spoke loaded resonators.
- See for example
 - FNAL's recent work on spoke cavities: A.
 Sukhanov et al SRF'13.
 - MSU's production efforts: T. Xu et al SRF'17.

RIKEN QWR After BCP

FRIB β = 0.29 BCP

ELECTROPOLISHING

In use at ANL since the 1970s.

- All polishing is done after fabrication is finished.
- Cooling water flow through space between helium jacket and Nb cavity.
- Unique Argonne Low-Beta Cavity EP Tool.
 - S.M. Gerbick et al, SRF'11.
 - M.P. Kelly et al, SRF'11.
- Would like to expand the application of EP in QWR, HWR and Spokes!

ELECTROPOLISHING - II

How it works.

HIGH PRESSURE RINSING

Get rid of the particulates (most of them).

- Design cavities for fluid flow.
- Spoke cavities are generally HPRed in 2 orientations:
 - TRIUMF & ANL.
- HPR varies greatly between labs.

TRIUMF Balloon Spoke HPR

17

Z. Yao et al (TRIUMF) SRF'17

RIKEN QWR

SUMMARY

A quick recap

- QWR, HWR and Spoke-Loaded Resonators provide a rich and interesting parameter space to explore.
- Many different labs are working on this problem: different applications, new and unique approaches, demanding operating conditions.
- Cavity fabrication and processing techniques continue to evolve.
- Performance rivals the TTC elliptical cell resonators in some cases.

