BNL SRF-gun Program

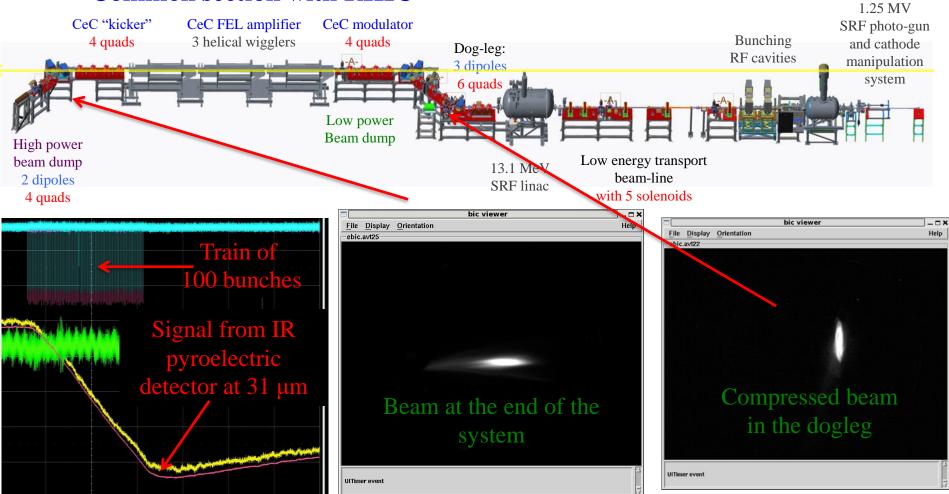
Subtitle: unintended success with SRF photoelectron gun for Coherent electron Cooling

Vladimir N. Litvinenko^{1,2}, Igor Pinayev², Joseph Tuozzolo², Jean Clifford Brutus², Ilan Ben-Zvi^{2,1}, Chase Boulware³, Charles Folz², David Gassner², Terry Grim³, Thomas Hayes², Patrick Inacker², James Jamilkowski², Yichao Jing^{2,1}, Dmitry Kayran^{2,1}, Jun Ma², George Mahler², Michael Mapes², <u>Kentaro Mihara¹</u>, Toby Miller², Geetha Narayan², Matthew Paniccia², Irina Petrushina¹, Triveni Rao²,

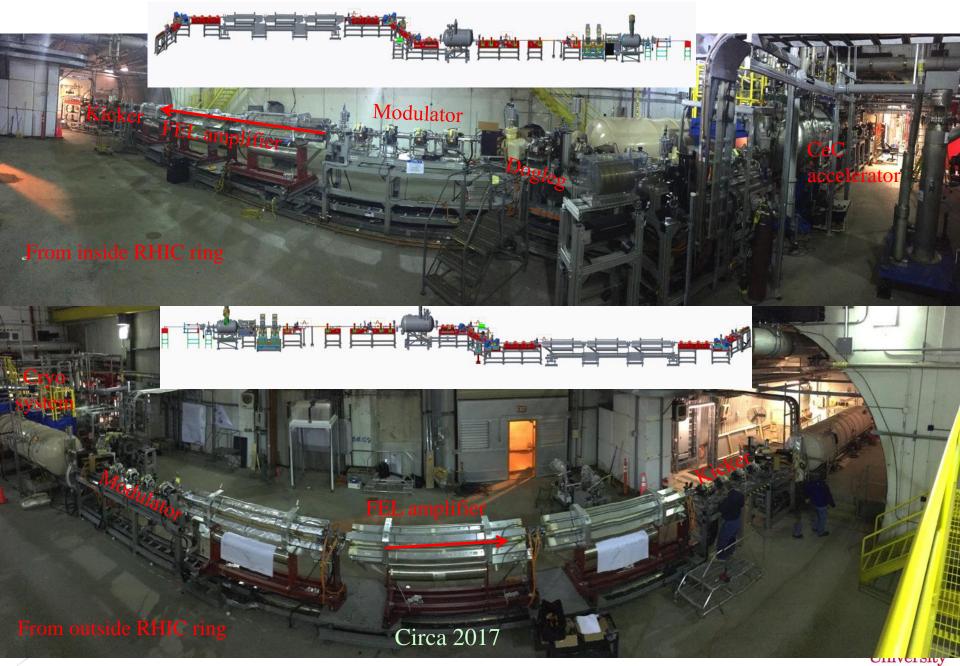
Kai Shih¹, John Skaritka², Loralie Smart², Kevin Smith², Yatming Than², Erdong Wang², Gang Wang^{2,1}, Binping Xiao², Tianmu Xin², Alexander Zaltsman²

¹ Department of Physics, Stony Brook University, Stony Brook, NY, USA
² Brookhaven National Laboratory, Upton, NY, USA
³ Niowave, Inc., 1012 N. Walnut St., Lansing, MI, USA

Main points


- 113 MHz CW SRF photo-electron gun was designed and built to provide a 1-2 nC bunches with modest normalized emittance ~ 5 mm mrad and rep-rate of 78 kHz... but it turned record after record.
 - maximum charge per bunch was > 10.5 nC per bunch (saturated charge measuring system will be updated)
 - normalized emittance of 0.32 mm mrad at 0.5 nC per bunch
 - 2 months long lifetime of high QE lifetime for CsK2Sb photocathode
- The gun routinely generated at 1.25 MeV (kinetic) CW electron beam (typically 1.5-1.6 nC per bunch), but was also tested at 1.5 MeV CW operation, which is limited by LiHe system capacity
- The most important (unique) features of our SRF gun are:
 - low RF frequency, providing for nearly on-crest acceleration of the electron beam from the emission to the exit: optimal photo-emission phase for 1.25 MeV beam is only -15.37 degrees
 - room temperature of the CsK2Sb photocathode system (gold-coated water cooled/warmed stainless steel stalk serving as a half-wave choke) inside 4K Nb cavity
 - adjustable depth of the cathode stalk position with respect to the cavity nose allows to optimize RF focusing of the gun
 - UHV transport and storage system for three Mo pucks coated with CsK2Sb
 - a dedicated and well-tuned script to pass multipacting barriers

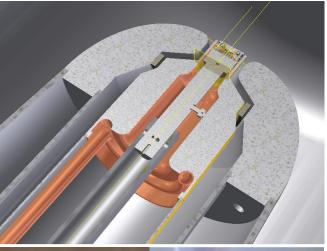
The CeC system commissioning


Common section with RHIC

CeC system's panoramic views

CeC SRF Gun

Laser cross Solenoid Shields Stalk


Cathode

Cavity

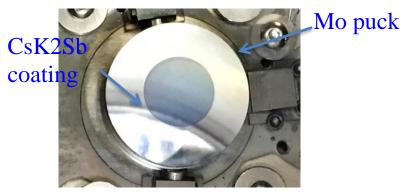
• Quarter-wave cavity

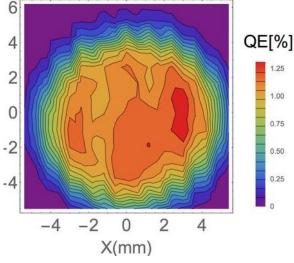
FPC

- Low 113 MHz operating frequency
- Maximum CW voltage 1.5 MV
- Field gradient 14.1 MV/m at 1.25 MV
- 4 K operating temperature
- Manual coarse tuner
- Fine tuning performed by fundamental power coupler (FPC)
- 4 kW CW solid state power amplifier
- CsK₂Sb Cathode is at room temperature
- Adjustable cathode stalk with an impedance transformer serving as 1/2 RF choke, used for cavity field pick-up antenna
- Three cathodes are stored in "a garage" for quick change-out

Cathode insertion manipulator

Garage

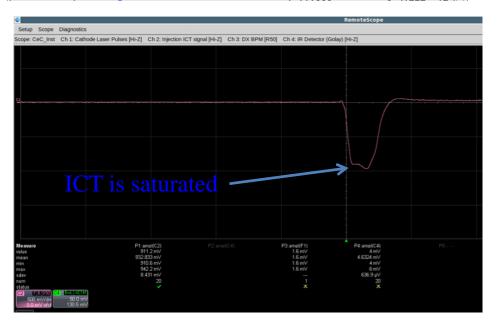

Photocathode end assembly



Samples of SRF photo-electron gun performance

In the deposition chamber

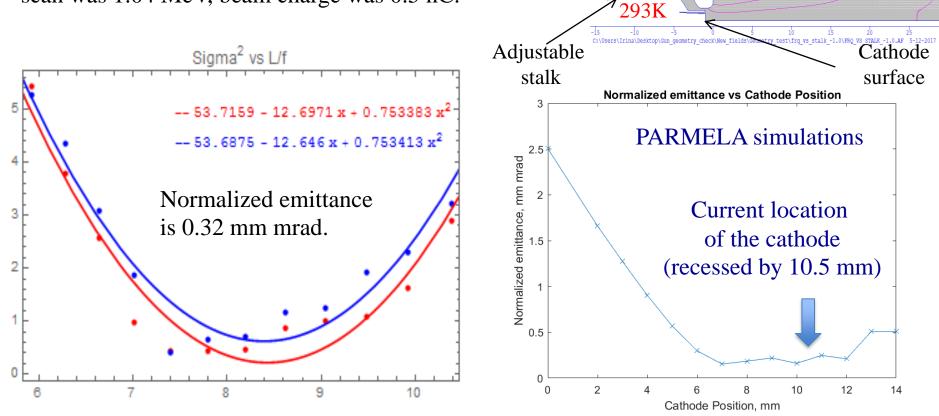
Typical QE from 1% to 4%



QE map inside the gun

Test of high charge operation ICT is saturated, Q> 10.5 nC

k /RHIC/Systems/CeC/Instrumentation/ICTs			
Page PPM Device	Data Tools Buffer		Help
CEC Current	Transformers	cecIctZynq.2a-ict1	4
		Upstream	Downstream
Maximum Charge		10478.2	55,173
Average Charge per Pulse		1362.6	7.46258
Number of Pulses		9	9
Total Train Charge		10951.2	97.9216
	_		



Most unexpected: record low transverse emittance

4K

4K

The beam size was measured on the first profile monitor (3.5 m from the gun) using scan of the gun solenoid current. Beam kinetic energy for this scan was 1.04 MeV, beam charge was 0.5 nC.

Cavity

nose

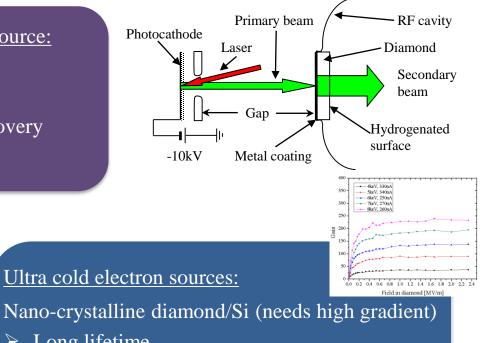
Current status

- CeC experiments, during which beam emittance was not important, with hadron beam had been completed on June 18, 2018
- CeC accelerator will continue operate till mid-September
- During this period we plan to fully characterize quality of electron beam generated by our SRF gun
- CeC accelerator will be also used for studying novel plasma-cascade micro-bunching instability
- We proposed to continue the SRF gun program into the future and are exploring possible funding possibilities to conduct it

Proposed future research with CeC SRF gun

Take the advantage of 113 MHz SRF gun high gradient, CW operation and ultra high vacuum, it will be very unique test bed for the following cathodes researches.

High current, long lifetime, ultra code electron source:


Diamond amplifier (needs CW RF field)

- > Extremely small angular distribution
- Not sensitive to residual gas /quick recovery

Puck (Mo)

Ring (Ta)

High average current in principle

- Long lifetime
- Small thermal emittance

Large crystal K₂CsSb/heterjunction K(Na)CsSb

- Small mean transverse energy
- Small dark current

Polarized electron source:

Strained GaAs (needs XHV)

- High polarization
- Extremely sensitive to residual gas

Topographic insulator (needs high gradient)

- High polarization
- Not wavelength dependence

Conclusions

- We built our SRF photo-electron gun for completely different purpose than typical guns pursuing generation of high brightness beams
- We expect this gun to do well, but experimental results exceeded our expectations:
 - the gun easily generated bunch charges in excess of 10 nC
 - it routinely generates CW 1.25 MeV e-beam with 1.5 nC/bunch and 78 kHz rep-rate
 - it generating beams with record high transverse brightness (0.32 mm mrad projected (!) normalized emittance for 0.5 nC bunch)
 - limited diagnostics (money!) does not allow to measure slice emittance, which is definitely lower than the projected
- Unique features of our SRF gun are responsible for this success:
 - low RF frequency with on-crest acceleration of the electron beam from the emission to the gun exit
 - room temperature of the CsK2Sb photocathode system inside 4K Nb cavity
 - adjustable depth of the cathode stalk position
 - a dedicated and well-tuned script to pass multipacting barriers
- Our SRF gun satisfies requirements as e-beam source for CW X-ray FELs

