

Cryomodule Production and First Cool Down Of FRIB Superconducting Linac

Ting Xu FRIB, MSU

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- Overview
- Cryomodule construction status
- Cool down and commissioning of first three cryomodule
- Summary

FRIB Superconducting Linac Ion Species up to ²³⁸U 200 MeV/u, 400 KW

Cryomodule Design Is Completed FRIB Cryomodule Development and Validation Path

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

FRIB SRF Infrastructure FRIB perform all processing assembling and testing on site

FRIB site at Michigan State University

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

T. Xu, TTC 2018 at RIKEN , Slide 5

Cryomodule Production Status Project to complete by end of 2019

Туре	Coldmass completed	Cryomodule assembled	Cryomodule bunker tested	Cryomodule in tunnel	Cryomodule needed (T+P)
β=0.041	3+1	3+1	3+1	3+1	3+1
β=0.085	11	11	11	11	11+1
β =0.085 buncher	1	1	1	1	1+1
β=0.29	12	8	5	5	12
β=0.53	8	2	2	2	18
β =0.53 buncher	0	0	0	0	1
Total	35+1	25+1	22+1	22+1	46+3

FRIB Cavity Status

- Over 290 cavities (90% of FRIB project baseline needs) have been received and accepted.
- More than 260 cavities have been certified and the rest are in the work flow

- VTA cold test through put more than 3 per week average and 1 per day at peak
- Reprocess rate is below 20% overall.

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

FRIB Cavity VTA Results

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

Cryomodule Production Status

- Coldmass (cleanroom assembly) production 1.5 per month
- Cryomodule assessmbly at 1 per month
- Cryomodule bunker test 1 per month

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Cryomodule Testing Program

- FRIB Cryomodules are fully tested before installation in the FRIB tunnel. 23 cryomodules have been certified.
- We do calibration and check for Xrays, gradient, LLRF locking, heat load, magnet operation, tuning range
- Q₀ values measured in the cryomodules are above FRIB specification with comfortable margin

		4.5 K Static [W]		2K Static [W]		Q₀ in CM at 2K	
СМ Туре	CM Tested	Spec	Measured *	Spec	Measured*	Spec	Measured*
041 QWR	4	12.8	14.9	3	3.9	1.20E+09	2.70E+09
085 QWR	11	20.5	21.2	4	7.75	1.80E+09	3.30E+09
29 HWR	5	13.1	13.2	5.1	4.8	5.50E+09	1.30E+10
53 HWR	2	16.1	12.8	6.3	6.5	7.60E+09	1.80E+10

Michigan State University

* Measurement is average for all the modules

SCM202, Cavities 3 and 4: 8 hours locking to test system stability

T. Xu, TTC 2018 at RIKEN , Slide 10

FRIB Phased Beam Commissioning Plan

ARR	Area with beam	Status
1	Ion Source, Low Energy Beam Transport, RFQ, Medium Energy Beam Transport	Done, 07/2017
2	Linac Segment (LS) 1 (β=0.041 cryomodules)	05/2018
3	Remainder of LS1 and first 45 degree dipole of Folding Segment (FS) 1	02/2019
4	Remainder of FS1, LS2	04/2020
5	FS2, LS3	09/2020
6	Beam Delivery System, Target, Pre-Separator in Target Hall	TBD
Final	Prior post-start items, Pre-Separator outside Target Hall, reconfigured A1900, entire facility	Before 06/2022

Michigan State University

 Accelerate heavy ion beams to energies < 2.4 MeV/u

- First three cryomodules (β=0.041)
- Warm Diagnostics Boxes between cryomodules
- Commissioning Diagnostic Station (D-Station)

Beam Line Devices Installed and Aligned

Beam line devices installed and pumped down to < 5 × 10⁻⁹ Torr

CA02

CA01

CA03

D-station

BPM (< 0.4 mm)

- Aligned all three cryomodules in tunnel to specification (< 1 mm)
 - Maximum misalignment of Cavities, $\Delta x : 0.39 \text{ mm}, \Delta y : 0.42 \text{ mm}, \Delta z : 0.73 \text{ mm}$ Solenoids, $\Delta x : 0.20$ mm, $\Delta y : 0.05$ mm, $\Delta z : 0.36$ mm

Vert Off Mete

Lattice Jiot	Dean or / Down	Deanieri/Moni
LS1_CA01:BPM_D1129	0.000097 UP	0.000254 BL
LS1 CA01:BPM D1144	0.000616 UP	0.000288 BL
LS1_CA02:BPM_D1163	0.000044 DN	0.00094 BL
LS1 CA02:BPM D1177	0.000222 DN	0.000236 BL

LS1_CA03:BPM_D1196	0.000337 UP	0.000296 BL
LS1_CA03:BPM_D1211	0.00009 DN	0.000045 BR

SCM401 (CA01)						
LS1_CA01_CAV1_D1127	0.0339	-0.0026	0.0234	0.000399 BR	0.000179 DN	0.000175 US
LS1_CA01_CAV2_D1136	0.0250	-0.0230	0.0179	0.000126 BR	0.000128 DN	0.000170 DS
LS1_CA01_CAV3_D1142	0.0957	0.0039	0.0008	0.000081 BR	0.000323 DN	0.000119 DS
LS1_CA01_CAV4_D1150	0.0747	0.0084	-0.0310	0.000138 BL	0.000040 UP	0.000280 DS
LS1_CA01_SOL1_D1132	0.0083	-0.0379	-0.0980	0.000117 BR	0.000002 DN	0.000027 US
LS1_CA01_SOL2_D1146	0.0307	0.0248	-0.0911	0.000202 BL	0.000037 UP	0.000243 US
SCM402 (CA02)						
LS1_CA02_CAV1_D1161	-0.0087	-0.0036	-0.0024	0.000239 BL	0.000049 DN	0.000564 DS
LS1_CA02_CAV2_D1169	-0.0105	-0.0395	0.0061	0.000186 BL	0.000074 DN	0.000735 DS
LS1_CA02_CAV3_D1176	-0.0363	-0.0274	-0.0283	0.000194 BL	0.000037 DN	0.000723 DS
LS1_CA02_CAV4_D1184	0.0438	-0.0878	-0.0262	0.000173 BR	0.000205 UP	0.000609 DS
	0.0244	0.0256	0.0724	0.000444.01	0.000004.001	0.000005.005

Yaw R3 Deg

Horz Off Meters

SCM403 (CA03)						
LS1_CA03_CAV1_D1195	0.0710	0.0311	-0.0546	0.000001 BR	0.000213 UP	0.000417 DS
LS1_CA03_CAV2_D1203	0.0061	0.0356	0.0239	0.000139 BL	0.000186 UP	0.000333 DS
LS1_CA03_CAV3_D1209	0.0526	-0.0256	-0.0107	0.000092 BR	0.000418 UP	0.000301 DS
LS1_CA03_CAV4_D1218	-0.0310	-0.0363	-0.0326	0.000096 BL	0.000006 UP	0.000351 DS
LS1_CA03_SOL1_D1199	0.0220	0.0364	-0.0112	0.000100 BL	0.000034 UP	0.000046 US
LS1_CA03_SOL2_D1214	0.0007	-0.0416	0.0058	0.000073 BR	0.000052 UP	0.000138 DS

FRIB First cool down of Superconducting Linac

Objective Measures	Date
System utilities in place	Done, 6/2017
Cryogenic plant ODH system complete	Done, 8/2017
Warm compressor commissioning	Done, 9/2017
Tunnel ODH system complete	Done, 11/2017
Cryogenic plant 4 K operational	Done, 12/2017
Cryogenics ready for LS1 cryomodules, 4 K	Done, 4/2018
Cryogenic transfer line cooled down to 4 K	Done, 5/2018
Cryomodule cavity and solenoid cooled	Done, 5/2018

May 10, 2018, cryo transfer line LS1 at 4 K

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Cryomodule Commissioning without Beam

Cryomodule commission goals

- Bandwidth
- Tuning range
- Cavity to FRIB spec field (5.1 MV/m)
- Magnet to FRIB specific field (8 T)
- Conditioning cavity MP barriers
- Tune the llrf control parameter settings to achieve the best control for amplitude and phase
- Develop the automatic turn-on program to prepare for operators
- Establish operation envelope for each cavity and magnet based on the commissioning test results
- Establish baseline performance of cryomodules at 4 K

Task list

Interlock test after cooldown	Controls
4 K calibration	Cryomodule
RF line connection	RF systems
Secured tunnel by Access	Accelerator
Control System (ACS)	operations
Individual cavity testing	Cryomodule
[Tunnel secured]	
Full module cavity operation check (all cavities) [Tunnel secured]	Cryomodule
Magnet testing	Cryomodule
Full module operations check (all cavities and magnets) [Tunnel secured]	Cryomodule

CA RF Commissioning: β =0.041 cryomodules

- RF Commissioning started May 29th
- Most RF commissioning work was done in the second shift (3pm-11pm) to not interrupt installation work in the tunnel.
- We observed some disturbance from 3pm-11pm when there was heavy construction work
- No sign of impact from the freight train railway nearby the compus
- Both solenoid header and cavity header bath pressure are regulated very steady (Delta<0.005atm)

Yellow highlight are the railways

RF commissioning status: Cryomodule is ready for Beam

- 12 cavities SEL model scan to 5.6 MV/m and no FE. Conditioned MP barriers
- All cavities can reach reference freq within the tuner working range
- 11/12 locked at 10% higher gradient than the specification (5.1 MV/m Eacc –FRIB 2K specification)
- Cavity#8 can lock at 4.2 MV/m and work in progress to FRIB spec

CA01: all 4 cavities at 5.6 MV/m

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

Cavity #	Eacc	Ampl Stabil	Amplitude Phas Stability (%) (Phase Stability (degree)		ver use V)
	(MV/m)	Pk-Pk	RMS	Pk-Pk	RMS	Averag e	Peak
1	5.6	0.13	0.01	0.37	0.04	274	335
2	5.6	0.13	0.01	0.35	0.04	284	307
3	5.6	0.13	0.01	0.37	0.04	213	281
4	5.6	0.13	0.01	0.37	0.04	227	302
5	5.6	0.23	0.01	0.97	0.06	309	483
6	5.6	0.15	0.01	0.48	0.05	225	350
7	5.6	0.09	0.01	0.47	0.07	232	265
8	4.2	1.9	0.07	1.7	0.10	156	950
9	5.6	0.1	0.01	0.37	0.04	321	381
10	5.6	0.1	0.01	0.37	0.04	306	502
11	5.6	0.1	0.01	0.37	0.04	270	443
12	5.6	0.1	0.01	0.37	0.04	261	306

T. Xu, TTC 2018 at RIKEN , Slide 16

LLRF Auto Turn On

Start assistant

- Cavity turn on procedure was identified and automated with Start Assistant on the Input/Output Controller (IOC) level to improve operation efficiency.
- For example, Quarter Wave Resonator (QWR) turn on goes through 6 stages automatically, checks for critical interlocks (cavity low, frequency error, etc.), with wait time before ramping to final set-point.

QWR Turn On Sequence						
	RF	Amplitude	Amplitude Set-point	Phase	Tuner	
	OFF	Open	Initial	Open	OFF	
Stage 1	ON	Open	Initial	SEL	OFF	
Stage 2	ON	Open	Initial	SEL	ON	
Stage 3	ON	Open	Initial	Open	ON	
Stage 4	ON	Close	Initial	Open	ON	
Stage 5	ON	Close	Initial	Close	ON	
Stage 6	ON	Close	Final	Close	ON	

–Feedback Mode–––––					
	Setting			Readback	
RF Output	Enable	Disable	0	Enabled	
Auto Restart	Start	Pause	0	Done, Active	
Amplitude Feedback	AD	RC	AD	RC	
Phase Feedback	ADRC		AD	RC	
Tuner Feedback	On Off		Enabled		
Control Parameters	Control Par			ters	
Quanting					
-Setpoints-					
	Se	tting		Readback	
Amplitude	5.6000 MV	//m	5.6	000 MV/m	
Phase	30.0 °		30.0 °		

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

0.5. Department of Energy Office o Michigan State University

Example: LS1_CA03:RFC_D1218

Example

• The last cavity in CA03 (D1218) was turned on automatically and locked at the final set-point (5.6 MV/m) within 30 seconds.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

Superconducting Magnets

- 2 Superconducting magnet packages per β=
 0.041 cryomodule
- Each solenoid package come with vertical and horizontal dipole correctors
- Solenoid field and integrated strength (8T, 13.6 T²/m)
- Mag shield design is local shield
- SC Magnet initial turn on sequence
 - Interlock check
 - Low current test and ramp to zero test
 - High current thermal imaging at the terminals
 - Polarity verification
 - Vapor cool leads control tuning

Table 2: Specification for the 25 cm solenoid package.

FRIB 25 cm Solenoid Parameters		
Parameter	Units	Value
Operation temperature	К	4.5 +0.5/-0.0
Operation pressure	bar	1.3 +0.7/-0.0
Inom, solenoid nominal current	A	≦ 90.9
$\int B_Z^2 dz$ at I_{nom}	T ² m	≧ 13.6
Peak solenoid field on beam axis ² at Inom (reference value)	Т	≧ 8.0
$\int B_z^2 dz$ uniformity at < 2R ₀ = 0.8 × cold bore inner diameter (full width)	%	≦ 2
Solenoid coil length (reference value)	cm	25
Cold bore inner diameter	cm	≧ 4.0
Minimum ramping rate using a 10 V power supply	A/s	≧ 0.5% <i>I_{nom}</i> /s
Deviation of field center from mechanical center	mm	≦ 0.3
Steering Dipole Coil Parameters for 25 cm Solenoid Package		
$\int B_x dz$, $\int B_y dz$, integrated field strength	Tm	≧ 0.03
$\int B_x dz$, $\int B_y dz$ uniformity within 15mm from the beam axis	%	≦ 5%
Mixing between $\int B_x dz$ and $\int B_y dz$ (x, y field mixing or cross talk)	%	≦ 2%
Perpendicularity tolerance between the X and Y dipoles	Degrees	≦1
Maximum current (see Section 1.5.9)	A	Option 1: ≦ 19.0

Cryomodule Cold BPM systems

- Each 0.041 cryomodule has 2 button-type BPMs incorporated with the cold mass.
- Tuned to 2nd RF harmonic (161 MHz) with narrow bandwidth receiver.
- Position and intensity nonlinearities due to geometry and lowbeta effects are compensated in software
- Sensitivity of BPMs ~100 um (position), 10's nA (intensity)
- Measured RF crosstalk equivalent beam current <10 nA</p>
- Nominal beam current 100 nA 1 mA

- 41 mm aperture
- 20 mm diameter button
- 0.090 inch mineral insulated, steel jacketed cold cable

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

U.S. Department of Energy Office of S Michigan State University

Next Step of Commissionging

- Accelerate ⁴⁰Ar⁹⁺ and ⁸⁶Kr¹⁷⁺ beam to 1.46 MeV/u
- Perform beam studies with the commissioning diagnostics station
 - Determine and set synchronous phase in each resonator
 - Verify and set accelerating field amplitude in each resonator
 - Measure and optimize beam properties
 - Develop operational setpoints
 - Setting of solenoids/steerers
 - Phase and amplitude of resonators

Summary

- FRIB Cryomodule production is on-going and project to be completed by 2019
- First stage superconducting Linac cool down successfully
- Cryomodule performance meet the beam commissioning requirement
- β =0.041 cryomodules are ready for beam commissioning

