

Plasma Cleaning R&D at FNAL

Paolo Berrutti

TTC Meeting 2018 at RIKEN Nishina Center 28th of June 2018

Plasma Processing activities at FNAL

Plasma cleaning R&D is ongoing at FNAL for 1.3 GHz 9-cell, LCLS-II, cavities:

- Ne-Oxygen plasma SNS recipe will be used on LCLS-II cavities.
- Plasma ignition and plasma detection RF techniques need to be adapted/modified for 1.3 GHz cavities.
- 1-cell, 9-cell offline cavities processing and finally in-situ cryomodule cleaning.

1.3 GHz 1-cell

1.3 GHz 9-cell in HTS

LCLS-II cryomodule

Collaboration for LCLS-II Plasma Processing

Project supported by DOE - Basic Energy Sciences (BES)

•

Plasma Processing at ORNL/SNS

- Reducing FE by increasing work function of cavity RF surface
 - Hydrocarbon contaminants observed on all Nb cavities
 - Hydrocarbons and adsorbates lower work function of Nb
- > Enabling operation at higher accelerating gradients

$$O_2 + C_x H_y \to CO + CO_2 + H_2 O$$

$$j = \beta \frac{AE^2}{\Phi} e^{-B \frac{\Phi^{3/2}}{\beta E}}$$
$$dj = 0 \quad \frac{dE_{acc}}{E_{acc}} \approx \frac{3}{2} \frac{d\Phi}{\Phi}$$

M. Doleans et al. NIMA 812 (2016) 50-59

J: current density E: surface electric field Φ : work function β : enhancement factor (\approx 10 to 100) A,B: constants

Increasing Φ by 10 % means increasing E_{acc} of about 15 %

Plasma Ignition in LCLS-II Cavities with TM₀₁₀ modes

- Plasma ignited sequentially cell-by-cell
- Dual tone excitation to ignite plasma in the desired cell (M. Doleans, J. Appl. Phys. 120, 243301 (2016))
 - <u>2 fundamental modes mixed</u> to increase field amplitude in one cell (and its mirror images)
 - Off-resonance excitation introduce asymmetry in the cell amplitude

LCLS-II 9-cells - 1st pass-band modes

5 P. Berrutti | TTC Meeting 2018 at RIKEN Nishina Center 28th June 2018

Plasma Ignition in LCLS-II Cavities with TM₀₁₀ modes

To obtain 10 kV/m, more power is needed comparing with SNS cavities:

- 9-cells instead of 6
- Larger mismatch at room T:
 - $Q_0 = 1 \cdot 10^4$ for Nb
 - SNS FPC: $Q_{ext} = 7 \cdot 10^5$
 - LCLS-II FPC: $Q_{ext} = 3 \cdot 10^7$
 - For LCLS-II only 1% of the power is transmitted to the cavity

Cell #	Mode 1	Amp	dF (HBW)	Mode 2	Amp	dF (HBW)	Pf FPC (W)
1	8/9 pi	0.67	0	рі	0.33	1.5	160
2	8/9 pi	0.75	-1.5	3/9 pi	0.25	0	200
3	5/9 pi	0.75	0	8/9 pi	0.25	-1.5	130
4	7/9 pi	0.58	1.5	4/9 pi	0.42	1.5	280
5	7/9 pi	0.75	0	5/9 pi	0.25	0	80
6	7/9 pi	0.5	-1.5	4/9 pi	0.5	-1.5	310
7	5/9 pi	0.75	0	8/9 pi	0.25	1.5	130
8	8/9 pi	0.71	1.5	3/9 pi	0.29	0	200
9	8/9 pi	0.67	-1.5	рі	0.33	-1.5	160

🗲 Fermilab

- Plasma ignition using fundamental modes/pass-band is highly dependent on coupling coefficient at RT!
- Two possible scenarios when mismatch between cavity and coupler is high:
 - NO PLASMA IGNITION
 - PLASMA IGNITION IN THE COUPLER!!!

Field Enhancement at the LCLS-II FPC

• Field enhancement at the coupler due to larger mismatch at room T and different FPC geometry

• Suggest larger probability to ignite the plasma at the coupler

$$\beta = \frac{Q_0}{Q_{ext}} \approx 0.003 \rightarrow |\Gamma|^2 \approx 0.99$$

🚰 Fermilab

New Idea: Plasma Ignition Using HOMs

HOM couplers are designed to extract power at HOMs frequencies: Good coupling also at room temperature!

For the first two HOM pass-bands:

 $0.01 < \beta < 1.17 \rightarrow 0.006 < |\Gamma|^2 < 0.94$

First plasma ignition test on 1.3 GHz 9-cell cavity, 200 mTorr of Ar: results show only few Watts are needed to ignite a glow discharge.

	CELL #		1	2	3	4	5	6	7	8	9
Ms plasma ignition	MODE1	MODE#	2-4	2-6	2-2	2-5	2-1	2-5	2-2	2-6	2-4
		AMP	0.51	0.89	0.94	0.4	1	0.9	0.84	0.76	0.5
	MODE2	MODE#	1-6	1-4	1-3	1-4	-	1-3	1-4	1-9	1-4
		AMP	0.49	0.11	0.06	0.6	-	0.1	0.16	0.24	0.5
OH	Pf TOT W		4.71	8.97	6.35	5.89	2.97	7.78	6.02	7.23	7.28
											= Feri

Selective cell ignition: HOMs superposition example

MODE 2-5: symmetric field CELL#4&6

Field amplitude maximized in cell #6

MODE 1-3: asymmetric field, CELL#6 higher

Set-up Plasma Ignition Studies

RF rack

Selective Plasma ignition in 9-cell cavities

- Plasma has been ignited in each cell of a 1.3 GHz cavity using HOMs
- The technique has been proven to work on two cavities: TB9NR011 and TB9NR014 both in 200 mTorr of Ar (left) and also with Neon (right) at different

pressures

Paschen Curve for 1.3 GHz 9-cell

- Plasma ignition power has been measured for 1.3 GHz 9-cell cavities using HOMs, different HOMs have been used to ignite plasma.
- Plasma ignition experimentally observed in a quite large pressure range from 70 to 300 mTorr, Paschen curve for Ne shown below.
- The power needed to ignite plasma has been compared to SNS HB data: required power is lower 200 mTorr ignition of Ne at ≈17W, Ar at ≈5W!

Plasma Tuning and Detection for 1.3 GHz 9-cell

- Plasma density is related to dielectric constant: plasma density can be calculated from measurement of RF frequency.
- Position of plasma in cavity can be detected by measuring a set of mode frequencies.
- Two examples of RF measurements are shown below, cell#5 (left) cell#8 (right): reference frequency values without plasma.
- RF power used for plasma tuning ≈2-3W.

HOMs plasma ignition in SSR1 spoke cavities

- Spoke resonators may benefit from plasma cleaning (MP processing, FE), usually Q₀ at RT is ≈5E3: lower than multi-cell structure → coupler-cavity mismatch very high at RT.
- HOMs can couple to FPC better than fundamental mode at RT!
- Drawback: HOMs in spoke cavities have complicated field distribution...see example below.

S11 measurements of SSR1 FPC

Plasma ignition SSR1 spoke cavity

- Ar at 250 mTorr requires RF power ranging from ≈2W to ≈30W (depending on the mode) to ignite glow discharge.
 PU flange
- Plasma distribution follows electric field distribution. needs to be
- Correct mix of modes to ignite areas of interest:
 - accelerating gaps
 - spoke base
 - spoke side
 - cylindrical shell

needs to be replaced with view-port

Cryomodule FPC

Conclusions

- Plasma Cleaning R&D at FNAL is showing applicability to 1.3 GHz 9-cell cavities:
 - Low power plasma ignition with HOMs
 - Plasma tuning and detection study show promising results for in-situ applicability on cryomodules
- HOMs plasma ignition allows overcoming limitations imposed by RT mismatch between cavity and couplers:
 - Possibility of plasma cleaning for cavities in cryomodule configuration without using variable couplers
 - Applicability to Spoke Resonators is being studied at FNAL, initial results are promising

Conclusions

- Plasma Cleaning R&D at FNAL is showing applicability to 1.3 GHz 9-cell cavities:
 - Low power plasma ignition with HOMs
 - Plasma tuning and detection study show promising results for

Thank you for your attention!

configuration without using variable couplers

 Applicability to Spoke Resonators is being studied at FNAL, initial results are promising

