



## HOM-based Diagnostics in SC Accelerating Cavities at FLASH and the European XFEL

## Nicoleta Baboi and Alexey Sulimov

## DESY

## on behalf of the international HOM-team

TTC Meeting, Japan, 26-29 June 2018







#### **Outline**

## > Motivation

## > HOM-BPM

## (HOM-based Beam Position Monitoring)

- Beam alignment
- Beam position measurement in 1.3 and 3.9 GHz cavities
- Cavity alignment measurement

## > HOM-BPhM

(HOM-based Beam Phase Monitoring)

> Summary











- > HOMs carry information about the beam properties  $\Rightarrow$  they can be used to monitor the beam
  - The strength of the excited dipole modes depends <u>linearly on</u> the beam <u>charge and transverse position</u>: q·r·(R/Q)
  - The timing of excited modes depend on <u>beam arrival time</u> (beam phase)







## > HOM-BPM (HOM-based Beam Position Monitoring )

- Enable the alignment of the beam based on the signals which can damage beam quality, therefore reduce the wakefield effects
- Measure the transverse beam position
- Measure the transverse cavity alignment in the cryo-module
- > HOM-BPhM (HOM-based Beam Phase Monitoring )
  - Direct, on-line measurement of beam phase wrt accelerating field phase
- > Does not require additional vacuum component, therefore relatively cheap



#### **HOM-BPM:** Dipole Modes



Cavity 1, HOM coupler 1 Passband 1, mode #6 Pol. 1: 1703.363 MHz

2: 1704.223 MHz

## > HOM amplitude vs. (x,y) (example)

Rotated polarizations (different for each cavity)





## HOM-BPM: 1.3 GHz Cavities



- > HOMBPM-electronics installed in FLASH
  - Use 1 dipole mode at 1.7 GHz, which has higher R/Q
  - Used as operator tool for beam alignment (ACC1-5)
  - Used for measurement of cavity alignment

Joe Frisch, SLAC

> Electronics under development for the E-XFEL

Jablonski, Szymon, DESY







#### > Used for beam alignment, mainly during commissioning





#### **HOM-BPM: 1.3 GHz Cavities Calibration**





> Calibration more complicated than in standard cavity BPMs

- Split modes
- Polarization direction is usually not horizontal or vertical, and, generally unknown
- Different frequency in each cavity (1.7 GHz ± 10 MHz)
- > Demonstrated use as BPM
  - 10 µm rms resolution

Resolution: 9µm





#### HOM-BPM: 3.9 GHz Cavities



> HOMs in 3.9 GHz cavities have higher impact on the beam

> No trivial copy of system for 1.3 GHz cavities, due to:





#### **HOM-BPM:** Cavity Alignment Measurement





#### **HOM-BPM:** Cavity Alignment Measurement (2)

#### > Results

 2 measurements are shown in the plot (ACC1)



T. Hellert et al., Phys. Rev. Accel. Beams 20, 123501 (2017)



#### **HOM-BPhM: Beam Phase Measurement**



#### > Experimental setup

- Can trace RF phase change of -5 and +5deg
- Resolution: 0.12deg rms







Liangliang Shi, DESY



#### **HOM-BPM+BPhM: Electronics for 1.3 GHz Cavities**



## > Multiple filter

- Selects 1.3 and 2.4 GHz monopole modes from the HOM spectrum
- Also 1.7 GHz dipole mode for beam position monitoring

## > Direct sampling







#### **Summary**



## > Motivation

- HOMs contain information about the beam and cavity, low cost monitors.
- Monitors built or being built for FLASH and E-XFEL, for 1.3 and 3.9 GHz cavities

## > HOM-BPM

- Beam alignment  $\rightarrow$  reduction of transverse wakefield effects
- Transverse beam position, like a cavity BPM
  - 1.3 GHz cavities:

Resolution ca. 10  $\mu m$  rms measured

Currently work on stability in time

- 3.9 GHz cavities:
  - Resolution ca. 20  $\mu m$  rms measured
  - More challenging due to cavity coupling, higher frequency
  - Extra challenges at the E-XFEL: longer cavity-chain, different cavity orientation

Cavity alignment measurement

## >HOM-BPhM

Experimental setup: Resolution of ca. 0.1 deg rms measured



#### <u>Outlook</u>



## > Current work:

- Long-term phase measurement
- Cavity tilt measurement
- Stability of beam position measurement in time
- Electronics for the E-XFEL being built

For 1.3 GHz cavities: beam position and phase For 3.9 GHz cavities: beam position





- > Talk based on work of many people from several institutes (only main part of the work is mentioned)
  - CEA: studies in TESLA cavities in FLASH
  - SLAC: studies and electronics in TESLA cavities at FLASH
  - FNAL: electronics for 3.9 GHz cavities in FLASH
  - University of Rostock: measurements and simulations 3.9 GHz cavities
  - University of Manchester/Cockcroft Institute: studies and simulations, 1.3 and 3.9 GHz cavities at FLASH
  - TEMF: cavity simulations
  - DESY

## > Part of the work has been made under EuCARD and EuCARD-2





# Thank you for your attention!





https://indico.cern.ch/event/465683/contributions/2269313/atta chments/1325170/1990289/HOM\_WORKSHOP\_2016.pdf

https://indico.cern.ch/event/465683/contributions/2269230/atta chments/1325164/1992713/2016.08.22-24\_HOMinXFEL\_HOMSC16\_Rostock.pdf

https://indico.cern.ch/event/465683/contributions/2269311/atta chments/1325882/1990314/160823\_HOMSC\_thellert.pdf

## e-mail: Nicoleta Baboi <nicoleta.baboi@desy.de>

