#### Results and Status of NA62

#### Babette Döbrich (CERN) for the collaboration

#### DESY Hamburg, 19/06/18



Babette Döbrich (CERN) for the collaborat

**Results and Status of NA62** 

DESY Hamburg, 19/06/18

#### NA62 at CERN's Prevessin Site



200 collaborators

Babette Döbrich (CERN) for the collaborat

**Results and Status of NA62** 

LICE

ATLA

#### $K \rightarrow \pi \nu \bar{\nu}$ : motivation and state of art



• ultra-rare FCNC decay, theory prediction:  $(K \rightarrow \pi \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$  Buras et al. JHEP 1511, 33

Babette Döbrich (CERN) for the collaborat

Results and Status of NA62

DESY Hamburg, 19/06/18 3 / 18

### $K \to \pi \nu \bar{\nu}$ : motivation and state of art



- ultra-rare FCNC decay, theory prediction:  $(K \rightarrow \pi \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$  Buras et al. JHEP 1511, 33
- experiment at BNL, E949 (2008), stopped Kaons: BR( $K \to \pi \nu \bar{\nu}$ ) =  $(17.3^{+11.5}_{-10.5}) \times 10^{-11}$  Phys. Rev. D 79, 092004
- NA62 primary goal: measurement of BR( $K \rightarrow \pi \nu \bar{\nu}$ ) with 10% signal acceptance (decay in flight)  $\Rightarrow 10^{13}K^+$  in fiducial volume



- ultra-rare FCNC decay, theory prediction:  $(K \to \pi \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$  Buras et al. JHEP 1511, 33
- experiment at BNL, E949 (2008), stopped Kaons: BR( $K \to \pi \nu \bar{\nu}$ ) =  $(17.3^{+11.5}_{-10.5}) \times 10^{-11}$  Phys. Rev. D 79, 092004
- NA62 primary goal: measurement of BR( $K \rightarrow \pi \nu \bar{\nu}$ ) with 10% signal acceptance (decay in flight)  $\Rightarrow 10^{13}K^+$  in fiducial volume
- BR correlated with flavor observables & sensitive to new physics, e.g. flavored axion models Phys. Rev. D 95, 095009 (2017)

イロト イポト イヨト イヨト

# NA62 rationale

A Kaon's life:

- BR( $K \rightarrow \pi^+ \pi^0$ )  $\simeq 0.21$
- BR( $K 
  ightarrow \mu^+ 
  u$ )  $\simeq$  0.64
- BR( $K 
  ightarrow \pi^+\pi^-\pi^+$ )  $\simeq 0.06$

Detector system

- Kaon: KTAG, GTK, CHANTI
- Pion: STRAW, CHOD, RICH
- $\bullet~\gamma$  Vetoes: LAV, IRC, SAC, LKr
- MUV system:  $\mu$  & Hadron



unseparated 750 MHz beam at GTK3 (6.6 % Kaons at 75 GeV, 1 % bite)



# NA62 rationale II & requirements

• 
$$m_{\rm miss}^2 = (P_K - P_\pi)^2$$

- 10<sup>12</sup> background rejection!
- kinematic  $\mathcal{O}(10^4)$
- high-efficiency veto:  $\mathcal{O}(10^8)$ rejection of  $\pi^0$  for  $E(\pi^0) > 40 {\rm GeV}$
- particle ID  $\mu$  vs  $\pi$ : rejection of  $\mathcal{O}(10^7)$  for  $15 < p_{\pi^+} < 35 \text{GeV}$
- $\bullet$  timing subdetectors  $\mathcal{O}(100 \mathrm{ps})$





 $\downarrow$ R1  $\downarrow$ R2

# 2016 data: $\sim 10^{11} {\it K}^+$ useful for analysis



- $K^+$  decay into single charged track,  $\pi^+$  PID,  $\gamma$  & multi-track rejection
- Performances: GTK-KTAG-RICH timing: O(100 ps),  $\gamma/\text{multi-track}$  rejection:  $3 \times 10^{-8}$ , overall  $\pi^+$  ID: 64%,

## Single Event Sensitivity and background budget

| SES = | 1                                                                                | $N_{\pi\pi} \cdot D$                           |
|-------|----------------------------------------------------------------------------------|------------------------------------------------|
|       | $\overline{N_K \cdot (A_{\pi\nu\nu} \cdot \epsilon_{RV} \cdot \epsilon_{trig})}$ | $N_K = \frac{1}{A_{\pi\pi} \cdot BR_{\pi\pi}}$ |

| Number of $K^+$ Decays                    | $N_{\rm K} = (1.21\pm 0.02)\times 10^{11}$                | -                                      |                                                           |
|-------------------------------------------|-----------------------------------------------------------|----------------------------------------|-----------------------------------------------------------|
| Acceptance $K^+ \to \pi^+ \nu \bar{\nu}$  | $A_{\pi\nu\nu} = 0.040 \pm 0.001$                         |                                        |                                                           |
| PNN trigger efficiency                    | $\epsilon_{trig} = 0.87 \pm 0.02$                         |                                        |                                                           |
| Random veto                               | $\epsilon_{RV} = 0.76 \pm 0.04$                           |                                        |                                                           |
| SES                                       | $(3.15\pm0.01_{stat}\pm0.24_{syst})	imes10^{-10}$         | Process                                | Expected events in R1+R2                                  |
| Expected SM $K^+ \to \pi^+ \nu \bar{\nu}$ | $0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$ | $K^+ \to \pi^+ \nu \bar{\nu} \ (SM)$   | $0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$ |
|                                           |                                                           | Total Background                       | $0.15\pm0.09_{\rm stat}\pm0.01_{\rm syst}$                |
|                                           |                                                           | $K^+ \to \pi^+ \pi^0(\gamma)$ IB       | $0.064 \pm 0.007_{stat} \pm 0.006_{syst}$                 |
|                                           |                                                           | $K^+ \rightarrow \mu^+ \nu(\gamma)$ IB | $0.020 \pm 0.003_{stat} \pm 0.003_{syst}$                 |
|                                           |                                                           | $K^+ \to \pi^+ \pi^- e^+ \nu$          | $0.018^{+0.024}_{-0.017} _{stat}\pm 0.009_{syst}$         |
|                                           |                                                           | $K^+ \to \pi^+ \pi^+ \pi^-$            | $0.002 \pm 0.001_{stat} \pm 0.002_{syst}$                 |
|                                           |                                                           | Upstream Background                    | $0.050^{+0.090}_{-0.030} _{stat}$                         |

- $N_K$  computed from  $K^+ \rightarrow \pi^+ \pi^0$  on control trigger stream (D = 400), w/o  $\gamma$  and multiplicity rejection and modified  $m_{\text{miss}}^2$ -cut
- Expected number of events from 2016 data:  $BR_{SM theory}/SES$
- validation of background expectations in control regions, see e.g. https://indico.cern.ch/event/714178/ for details

#### Unblinding of signal regions: 1 event observed in 2016 data



 $\begin{array}{l} BR(K^+\to\pi^+\nu\bar\nu)<11\times10^{-10}\ @\ 90\%\ CL\\ BR(K^+\to\pi^+\nu\bar\nu)<14\times10^{-10}\ @\ 95\%\ CL \end{array}$ 

$$\begin{split} & \text{Expected limit:} \quad BR(K^+ - \pi^{\pm} \nu \bar{\nu}) < 10 \times 10^{-10} @ 95\% \ CL \\ & \text{For comparison} \quad BR(K^+ - \pi^+ \nu \bar{\nu}) = 2.8^{+2.4}_{\pm 2.4} \times 10^{-10} @ 68\% \ CL \\ & BR(K^+ - \pi^+ \nu \bar{\nu})_{SM} = (0.84 \pm 0.10) \times 10^{-10} & \text{SM prediction} \\ & BR(K^+ - \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.16}) \times 10^{-10} & \text{BNL E949/E787 Kaon Decay at Rest} \end{split}$$

- Processing of 2017 data ongoing (20-fold present statistics)
- 2018: data taking ongoing  $\rightarrow$  prospect of some mitigation of upstream background

Babette Döbrich (CERN) for the collaborat

**Results and Status of NA62** 

A B F A B F

protons on target (POT)

main measurement:

BR  $\mathcal{O}(10^{-10})$ :  $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ 

 $\leftarrow$  beam collimator (TAX) 'open'

$$\Rightarrow$$
  $K^+$  to detector  $\downarrow$ 



Babette Döbrich (CERN) for the collaborat

**Results and Status of NA62** 

 ✓ □ → < □ → < □ → □</td>

 DESY Hamburg, 19/06/18

protons on target (POT)

main measurement:

BR  $\mathcal{O}(10^{-10})$ :  $K^+ \to \pi^+ \nu \bar{\nu}$ 1) Kaon decay

with exotic

 $\leftarrow \text{ beam collimator (TAX) 'open'}$ 

$$\Rightarrow$$
  $K^+$  to detector  $\downarrow$ 



**Results and Status of NA62** 

protons on target (POT) can produce exotics

main measurement:

BR  $\mathcal{O}(10^{-10})$ :  $K^+ \to \pi^+ \nu \bar{\nu}$ 

1) Kaon decay

with exotic

2) parasitically:

e.g. exotic  $\rightarrow I^+I^-$ 

 $\leftarrow$  beam collimator (TAX) 'open'

$$\Rightarrow$$
  $K^+$  to detector  $\downarrow$ 

+ exotic away from beamline



protons on target (POT) can produce exotics

> main measurement: BR  $\mathcal{O}(10^{-10})$ :  $K^+ \to \pi^+ \nu \bar{\nu}$

1) Kaon decay

with exotic

2) parasitically:

e.g. exotic  $\rightarrow I^+I^-$ 

3) dedicated data-taking

e.g. axion  $ightarrow \gamma\gamma$ 

some examples will follow!

 $\leftarrow \text{ beam collimator closed} \rightarrow \text{dump}$ 

 $\Rightarrow \quad \mbox{exotics to detector} \downarrow \label{eq:product}$  with much reduced backgrounds



## 1) Kaon decay with exotic: results

Trigger band width shared by  $\pi^+ \bar{\nu} \nu$ + other Kaon & non-Kaon modes example Kaon:  $K^+ \rightarrow N + I^+$ ,

N: 'stable' Heavy Neutrino 2015 data: PLB 778 137 (2018) based on  $\sim 3 \times 10^8$  Kaon decays



# 1) Kaon decay with exotic: results

Trigger band width shared by  $\pi^+ \bar{\nu}\nu$ + other Kaon & non-Kaon modes example Kaon:  $K^+ \rightarrow N + l^+$ ,

N: 'stable' Heavy Neutrino 2015 data: PLB 778 137 (2018)  $_{\text{based on}\,\sim\,3\,\times\,10^8}$  Kaon decays





from 2016 data:

invisibly decaying Dark Photon  $\mathcal{K}^+ \to \pi^0 \pi^+$  with  $\pi^0 \to \mathcal{A}' + \gamma$ (prelim: paper in preparation) search peak in missing mass of  $m_{\text{miss}}^2 = (P_{\mathcal{K}} - P_{\pi} - P_{\gamma})^2$ 

Babette Döbrich (CERN) for the collaborat

**Results and Status of NA62** 

**DESY** Hamburg, 19/06/18

## 2+3) Exotic from dumped-beam: prospects

- Parasitic to  $\pi \nu \bar{\nu}$ : invisible Dark Photons, heavy Neutrinos... as seen before
- **2** Trigger Parasitic to  $\pi\nu\bar{\nu}: \mu\pi + \mu\mu$  away from beamline: 2017:  $\mathcal{O}(10^{17})$  POT, sizable statistics  $\mathcal{O}(10^{18})$  POT possible this year
- dump-mode: sizable statistics \$\mathcal{O}(10^{18})\$ reserved for future, but some channels discovery potential with moderate statistics (e.g. ALP \$\mathcal{O}(10^{16})\$)\$



Under study / definition, interaction/synergy with the Physics Beyond Collider CERN initiative

 $\Rightarrow$  In the following: "long-lived" prospects at  $\mathcal{O}(10^{18})$  POT

Babette Döbrich (CERN) for the collaborat

Results and Status of NA62

DESY Hamburg, 19/06/18

• • = • • = • = •

## ALPs coupled to photons

$$\mathcal{L}_{axion} = \mathcal{L}_{SM} + \mathcal{L}_{DS} + \frac{a}{f_{\gamma}} F_{\mu\nu} \tilde{F}_{\mu\nu}$$
ALP= Axion-like particle  
(name derives from QCD axion)  
good properties  
as dark matter mediator  
see e.g. 1709.00009
$$\int_{10^{-2}}^{10^{-2}} \int_{10^{-2}}^{10^{-2}} \frac{e^{t}e^{-2} \times \gamma\gamma}{10^{-1}}$$

• Assume 10<sup>18</sup> 400-GeV POT

• projection based on Primakov production and 0 background

## Dark Photons

$$\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B_{\mu\nu},$$



- Assume 10<sup>18</sup> 400-GeV POT
- Study DP production (meson decays, bremsstrahlung) from interaction on target, search for ee,  $\mu\mu$
- assume zero background, expected 90%-CL exclusion plot

## Dark Scalars

$$\mathcal{L}_{\text{scalar}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - (\mu S + \lambda S^2) H^{\dagger} H,$$



- Assume 10<sup>18</sup> 400-GeV POT
- sensitivity to hidden scalars charged decays search for *ee*,  $\mu\mu$ ,  $\pi\pi$ , *KK* two-track final states originating at the TAX
- assume zero background, expected 90%-CL exclusion plot

Image: A = 1

#### Heavy Neutral Leptons





- $\bullet$  e.g.  $\nu MSM \rightarrow$  neutrino masses, (warm) DM candidate and baryon asymmetry
- separately address 3 extreme coupling scenarios [Shaposhnikov, Gorbunov arXiv:0705.1729]
- Assume 10<sup>18</sup> 400-GeV POT: search for two-track final states originating at the TAX sensivity includes open channels, assuming 0 background
- assume zero background, evaluate expected 90%-CL exclusion plot

# Background rejection NA62: 2016 data $\mathcal{O}(10^{15})$ POT



- Track quality (association with CHOD, LKr hits in time) + acceptance (CHOD, LKr, MUV3)
- Vertex quality: two-track-distance  $<1{\rm cm},$  vertex-position 105< z <165 m
- further veto (rhs):  $E_{\rm LKr, additional} < 2$  GeV; IRC, SAC, LAV no hits with  $\pm$  5ns, CHANTI no candidate within  $\pm$  5ns
- no events in signal region at TAX even with standard  $K^+$  beam at  $\mathcal{O}(10^{15})$  POT, background rejection OK for  $\mathcal{O}(10^{15})$  POT in standard conditions and  $4 \times \mathcal{O}(10^{15})$  in dump

Babette Döbrich (CERN) for the collaborat

# Thanks for listening :-)

- $\pi\nu\bar{\nu}$  expected about 20 SM events from the 2017+2018 sample
- Kaon in-flight-decay technique validated
- methods to improve signal efficiency under study
- 2018: Processing on parallel with data-taking
- the analysis of 2017+2018 sample should provide: ESPP input

In addition,

- before LS2: πνν-parasitic triggers/searches + short dedicated beam-dump runs
- after LS2,  $\mathcal{O}(10^{18})$ POT would provide sensitivity to various weakly coupled particles

Babette Döbrich (CERN) for the collaborat

#### Additional slides/backup

Babette Döbrich (CERN) for the collaborat

**Results and Status of NA62** 

DESY Hamburg, 19/06/18

<ロ> <同> <同> < 同> < 同>

18 / 18

- 2