The mass of the neutrino – truly ... the KATRIN experiment and beyond

Ill: N. Elmehed. © Nobel Media 2015

2015 Nobel Prize in Physics

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass".

→ Read more about the prize

Bustration: © Johan Jamestad/The Royal Swedish Academy of Science

They Solved the Neutrino Puzzle

Takaaki Kajita and Arthur B. McDonald solved the neutrino puzzle and opened a new realm in particle physics. They were key scientists of two large research groups, Super-Kamiokande and Sudbury Neutrino Observatory, which discovered the neutrinos mid-flight metamorphosis.

New Physics Laureate Takaaki Kajita: "Kind of Unbelievable!"

An interview with Takaaki Kajita. Hear how he reacted when he got the call that he has been awarded the 2015 Nobel Prize in Physics.

Kajita outreach talk: If neutrinos were massless they were traveling with c \rightarrow proper time does not pass any more, hence they cannot change

Neutrino versus Standard Model

- Does the Higgs give mass to the neutrinos? - Actually Not in SM!
- What are the masses of the known neutrino types?
- Are neutrinos their own antiparticles (Majorana)?
- More then three neutrino flavors (sterile)?
- Why did matter win over anti-matter?
- Current best fit for Dirac CP-violating phase maximal: ~ 270°

- Neutrinos 250,000 times lighter than electron
 - No simple extension of SM for 3 reasons:
 - No right-handed neutrinos → no Dirac mass term
 - Lepton number symmetry of SM → no Majorana mass term
 - Only renormalizable terms
 - Neutrino mass lowest order perturbation of BSM?
 - Seesaw mechanism: Neutrino mass suppressed by heavy partner

The absolute neutrino mass

Truly !

	A STATE OF STATE		J
		e e e e e e e e e e e e e e e e e e e	ⁿ ^p ³ H ^e ^h ^p ^h ^p ^h ^p
	Cosmology	Search for 0vββ	β-decay & electron capture
Observable	$M_{ u} = \sum_{i} m_{i}$	$m_{etaeta}^2 = \left \sum_i U_{ei}^2 m_i ight ^2$	$m_eta^2 = \sum_i U_{ei} ^2 m_i^2$
Present upper limit	0.12 – 1 eV	0.2 – 0.4 eV	2 eV
Potential	15 – 50 meV	15 – 50 meV	200 meV
Model dependence	Multi-parameter cosmological model	 Majorana v: LNV BSM contributions other than m(v)? nucl. matrix elements Incl. interferences 	Direct, only kinematics; no cancellations in incoherent sum

Fermi theory of beta decay Fermi's Golden Rule: $\Gamma_{i \to f} = \frac{2\pi}{\hbar} |\langle f | H | i \rangle|^2 \cdot \rho(E_f)$ interaction matrix density of final states decay rate $dn = \frac{V}{h^3} \cdot p^2 dp \cdot d\Omega$ $\rho(E_e, E_v, d\Omega_e, d\Omega_v) = \frac{V^2}{(2\pi)^6} \cdot p_e E_e \cdot p_v E_v$ $E := E_{\rho} - m_{\rho}$: kinetic electron energy $E_0 = Q - E_{recoil}$: maximal kinetic electron energy for $m_{\nu} \neq 0$ and $E_{recoil} \neq 0$ for $m_{\nu} = 0$ and $Q \simeq E_0$ $\frac{dN}{dE} \propto p_e E_e (E_0 - E) \sum_i |U_{ei}|^2 \sqrt{(E_0 - E)^2} - m^2(\nu_i)$ $p_{v} = E_{v} = Q - E$ $\frac{dN}{dE} \propto p_e E_e \cdot (Q - E)^2$ p_{v_i} region close to endpoint 0.8 $\sqrt{\frac{dN}{dE}}$ versus E : Kurie plot $m^2(\mathbf{v}_e) = \sum_i |U_{ei}|^2 m^2(\mathbf{v}_i)$ 0.6 $m(v_e) = 0 eV$ Observable: \Rightarrow Q = abscissa 0.4 Mass squared! only 2 x 10⁻¹³ of 0.2 decays in last 1 eV 100x better meas. interval $m(v_e) = 1 eV$ 0 \rightarrow 1/10 x m(v) -2 -3 0 -1 The mass of the neutrino – truly E - E_∩ [eV] helbing@uni-wuppertal.de | PATRAS 2018 | 6

Moore's law for direct neutrino mass

Year

Recipe for improving sensitivity

- Improve statistics
 - Luminous beta source (10¹¹ decays/s)
 - Excellent energy resolution (0.93 eV)
 - Low backgrounds (even at sea level)
- Improve systematics
 - Extensive commissioning

- Molecular physics
- Column density (activity, scattering)

Powers of Ten

- 5 × 10⁻⁵ energy resolution
 - → spectrometer volume: 1400 m³
 - \rightarrow 3.5 Tesla superconducting magnets
- 10⁻³ stability of tritium source density
 - \rightarrow temp. regulation by dual phase Ne
- **10⁻³ isotope content in source**
 - → laser Raman spectroscopy
 - \rightarrow rapid circulation and purification system
- **10⁻⁵ non-adiabaticity in electron transport**
 - \rightarrow novel computational code KASSEIPEIA
 - \rightarrow pulsed and pointing electron gun
 - 10⁻⁶ monitoring of HV-fluctuations
 - \rightarrow ultra-precision HV divider
 - → ^{83m}Kr energy standard
- 10⁻⁸ remaining ions after source
 - → dipole drift electrodes, FT-ICR
 - 10⁻¹⁴ remaining flux of molecular tritium
 - \rightarrow 3 Kelvin cryopumping with Argon frost
- 10⁷ dynamic range of rate
 - \rightarrow electronics and DAQ
- 10⁻¹¹ mbar ultrahigh vacuum
 - \rightarrow huge getter and turbo molecular pumps

KATRIN collaboration

KArlsruhe TRitium Neutrino experiment

- direct n-mass experiment: at Tritium Laboratory (TLK), KIT
- international collaboration ~130 members
 from 6 countries: D, US, CZ, RUS, F, ES
- uniting the world's expertise in tritium peta decy!

KATRIN beam line: 70 m

Tracking the beta-electrons

MAC-E filter principle

Magnetic Adiabatic Collimation & Electrostatic filter

Technical start of KATRIN: "1st light": Oct. 14, 2016

Photo electrons over full 70m long beamline, but no tritium yet

BERGISCHE UNIVERSITÄT WUPPERTAL

The mass of the neutrino – truly helbing@uni-wuppertal.de | PATRAS 2018 | 13

First tritium in KATRIN since 18 May

0.5% T atoms circulating in D_2 gas

- WGTS beam-tube temperature
 - Standard deviation less than 0.1% over 60 min

 Source and Transport System stability

Beam monitoring: What I had thought of ...

Fluorescent screens to be flipped into > ~ GeV beams at moderate vacuum.

... what it actually is

Stepper motors & encoders

2 m long bellow

- Rate stability required: 0.1 %
- Count rate with nominal tritium density: 1 MHz per 1 mm²
- Vacuum: 10⁻⁹ mbar
- Magnetic field: 1.2 Tesla
- Temp.: -190° +150° C

The mass of the neutrino – truly helbing@uni-wuppertal.de | PATRAS 2018 | 15

Electrons from source

with spiral motion

Exchangeable &

2D movable (0.1mm)

detector board

BERGISCHE UNIVERSITÄT WUPPERTAL

The mass of the neutrino – truly helbing@uni-wuppertal.de | PATRAS 2018 | 16

BERGISCHE UNIVERSITÄT WUPPERTAL

First tritium spectra

The mass of the neutrino – truly helbing@uni-wuppertal.de | PATRAS 2018 | 17

What's next

- KATRIN is now put to work
 - First full-beamline data, Oct. 2016
 - First spectral measurement of radioactive source, July 2017
 - First tritium since 5 weeks after ~ 20 year of preparation
 - Measurements this fall with D_2 gas
 - expect first neutrino mass data in early 2019
 - 5 year measurement campaign for neutrino mass
- Additional programme:
 - Sterile neutrinos at eV and keV scales
 - Right-handed weak currents
- Next steps:
 - KATRIN discovers neutrino mass \rightarrow Stockholm ? , reconsider ΛCDM ?
 - ... in the remote chance, it is not found ... KATRIN is not immediately scalable \rightarrow new ideas needed!

 - ECHo
 - Project-8

Sterile keV Neutrinos

ECHo: ¹⁶³Ho electron capture with metallic magnetic calorimeters

Project 8 goal: Measure coherent cyclotron radiation of tritium β electrons

General idea:

Project 8: Single electron detection from ^{83m}Kr

First detection of single electrons successfull but still a lot of R&D necessary
- Is a large scale experiment possible ?
- What are the systematic uncertainties

& other limitations?

Thank you for your attention!

Backgrounds

²¹⁹Rn atoms:

- ²¹⁹Rn emanates from NEG
- bg-rate: ~0.5 cps

countermeasure:

cryotraps in front of NEG

- 3 LN2-cooled Cu-baffles

H* Rydberg atoms:

Н*

desorbed from walls
 due to ²⁰⁶Pb recoil ions

100 meV

- bg-rate: ~0.5 cps

countermeasures:

isotropic bg for

longer exposure

reduce H-atom surface coverage:

- extended bake-out phase
- strong UV illumination source

Can't we use Axions?

Background and sensitivity

BERGISCHE UNIVERSITÄT WUPPERTAL

helbing@uni-wuppertal.de | PATRAS 2018 | 25