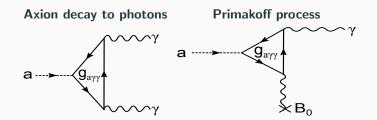
# Search for gamma-ray spectral modulations in Galactic pulsars as a result of photon-ALPs mixing.

Jhilik Majumdar Collaboration: Francesca Calore and Dieter Horns. JCAP 04(2018)048 (ArXiv: 1801.08813)


June 18, 2018

Institute for Experimentalphysics, University of Hamburg





#### Detection of Axions/ALPs with photons



Axion/ALPs have the property:

Oscillate into photons or vice-versa at the presence of magnetic field via Primakoff process.

$$\mathcal{L} \supset -\frac{1}{4} g_{a\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu} a = g_{a\gamma\gamma} \vec{E} \cdot \vec{B} a , \qquad (1)$$

[Raffelt and Stodolsky 88, Sikivie 83.]

#### **Photon-ALP** mixing matrix

$$\mathcal{M}_0' = \begin{pmatrix} \Delta_{\parallel} & \Delta_{a\gamma} \\ \Delta_{a\gamma} & \Delta_a \end{pmatrix}.$$
 (2)

The matrix is made diagonal by a rotation about an angle,

$$\frac{1}{2}\tan 2\theta = \frac{\Delta_{a\gamma}}{\Delta_{\parallel} - \Delta_{a}} \tag{3}$$

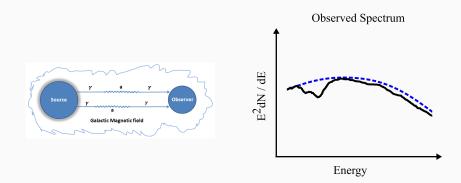
In analogy to neutrino oscillations, the conversion probability for axion to photon,

$$P_{a \to \gamma} = \sin^2(2\theta) \sin^2(\frac{1}{2}\Delta_{osc}l), \qquad (4)$$

$$\Delta_{osc} = 2\Delta_{a\gamma} \sqrt{1 + \left(\frac{E_c}{E}\right)^2} \quad (5)$$

$$sin(2 heta) = rac{2\Delta_{a\gamma}}{\Delta_{osc}} = rac{1}{\sqrt{1 + \left(rac{E_c}{E}
ight)^2}} \ (6)$$

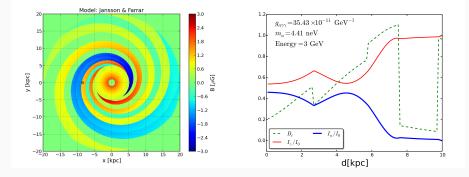
 $\Delta_{\parallel} = \Delta_{\it pl} + 2\Delta_{\it QED} ~(7)$ 


$$\Delta_{pl} = -\omega_{pl}/2E \qquad (8)$$

$$\Delta_a = -m_a^2/2E \qquad (9)$$

$$\Delta_{a\gamma} = 1/2g_{a\gamma\gamma}B_{\perp} \quad (10)$$

3


#### Photon-ALPs conversion in magnetic field.



The photon-ALPs oscillation is efficient at energies larger than a critical photon energy  $E_c$ ,

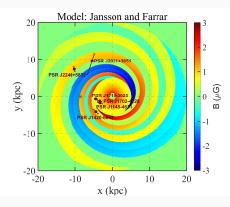
$$E_c = \frac{|m_a^2 - \omega_{Pl}^2|}{4\Delta_{a\gamma}} \simeq 2.5 \text{ GeV} \frac{|m_a^2 - \omega_{Pl}^2|}{1 \text{ neV}} \left(\frac{B_\perp}{\mu \text{G}}\right)^{-1} \left(\frac{g_{a\gamma\gamma}}{10^{-11} \text{ GeV}^{-1}}\right)^{-1},$$
(11)

#### Photon-ALPs conversion in magnetic field.



Photon (red thin line) and ALPs (blue thick line) intensity along the line of sight towards PSR J2021+3651. The green dashed line marks the transversal magnetic field.

• We investigate for the photon-ALPs oscillation features in the disappearance channel in IGMF .


## Detecting gamma rays by Fermi LAT

- Gamma ray space telescope.
- Field of view : 20% of sky at a time.
- Effective area:  $1m^2$ .
- Energy range from about 100
   MeV to more than 500 GeV.
- Period: 1.6 hours(on orbit).
- Energy resolution: < 5% above 300 MeV.



Fermi Large Area Telescope [Image Credit: NASA/Fermi LAT Collaboration]

## Source selection



Source positions in the plane of Galactic magnetic field (Jansson & Farrar model; Jansson et al. 2012).]

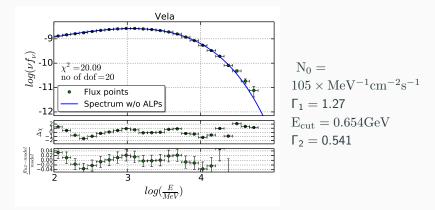
#### Source selection criterion:

- Bright galactic source.
- Located at large pitch angle.
- Photons coming from the sources are crossing the spiral arms along the line of sight.

#### **Pulsar list:**

- 1. J2021+3651
- 2. J1420-6048
- 3. J2240+5831
- 4. J1648-4611
- 5. J1718-3825
- 6. J1702-4182

#### Fermi-LAT data analysis:


- 9 years of Fermi LAT data Pass 8 data [Ackermann et al. 2014].
- ENRICO binned likelihood optimization technique has been performed(Sanchez & Deil, 2013).
- Energy region: 100 MeV to 300 GeV.
- Energy bins: 25.
- ROI : 15°.
- Diffused Galactic emission are kept fixed.
- Pulsar spectrum is modelled by a power law with sub exponential cutoff:

$$\frac{dN}{dE} = N_0 \left(\frac{E}{E_0}\right)^{-\Gamma_1} exp\left[\left(-\frac{E}{E_{cut}}\right)^{-\Gamma_2}\right]$$
(12)

- We perform a fit to the data, minimizing the  $\chi^2$  function.
- Energy dispersion matrix (D<sub>kkp</sub>) derived for all the EDISP event types together.

#### Fermi-LAT data analysis

- Approach: data driven method to calculate systematic uncertainties.
- Source used : Vela ( dist 0.294<sup>+0.076</sup><sub>-0.050</sub> kpc).



• For P8R2 SOURCE V6 event class, systematic uncertainties in effective collection area are derived to be about 2.4 %.

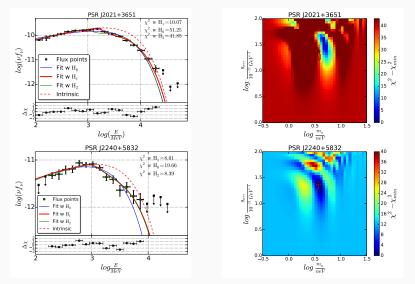
 signature of photon-ALPs oscillations, including the effect of oscillations in the predicted spectra:

$$\left(\frac{dN}{dE}\right)_{\rm w/o\,ALPs} = D_{kk_p} \cdot \left(\frac{dN}{dE}\right)_{\rm intrinsic}, \qquad (13)$$

and

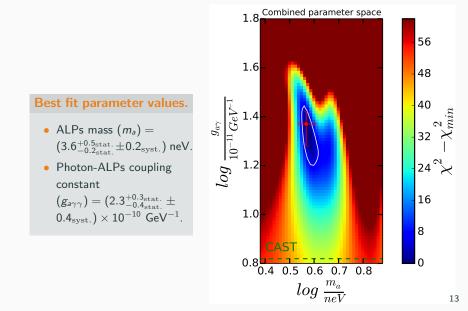
$$\left(\frac{dN}{dE}\right)_{\text{wALPs}} = D_{kk_{p}} \cdot \left(1 - P_{\gamma \to a}\left(E, g_{a\gamma\gamma}, m_{a}, d\right)\right) \cdot \left(\frac{dN}{dE}\right)_{\text{intrinsic}},$$
(14)

 Photon survival probability calculation: electron density model in the interstellar medium and Galactic magnetic field included.


```
[M. Meyer et al. PRD 87 (2013),
R. Jansson et al. 2012.]
```

| Hypotheses     | Assumptions                                                                        |  |  |  |
|----------------|------------------------------------------------------------------------------------|--|--|--|
| H <sub>0</sub> | No ALPs fit following eq. 13.                                                      |  |  |  |
| $H_1$          | Modification according to eq. 14, $g_{a\gamma\gamma}$ , $m_a$ left                 |  |  |  |
|                | free for each source.                                                              |  |  |  |
| $H_2$          | Modification according to eq. 14, $\mathrm{g}_{\mathrm{a}\gamma\gamma}$ , m $_{a}$ |  |  |  |
|                | globally fit.                                                                      |  |  |  |

Tested hypotheses, i.e.  $\mathrm{H}_0,\,\mathrm{H}_1$  and  $\mathrm{H}_2.$ 


- Spectral fitting including  $H_0$  :  $N_0$ ,  $\Gamma$  and  $E_{cut}$ .
- Spectral fitting including  $H_1$  :  $N_0$ ,  $\Gamma$ ,  $E_{cut}$ ,  $m_a$  and  $g_{a\gamma\gamma}$ .
- As mass and coupling is unified: Spectral fitting including  $H_2$ .

#### **Pulsar spectra**

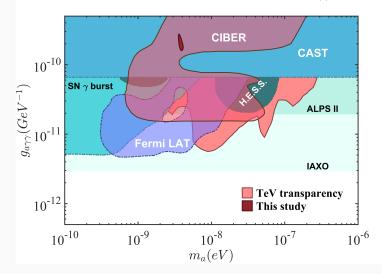


Left panel: Best-fit model of the spectrum of Pulsar candidates. Right panel: The  $\chi^2$  scan as a function of  $g_{a\gamma\gamma}$  and  $m_a$ .

#### Combined Photon-ALPs coupling and ALPs mass sensitivity

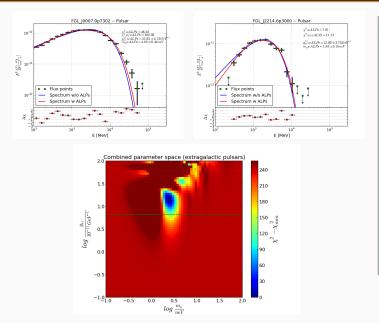


## Significance level


| Pulsar name | $\chi^2(dof) H_0$ | $\chi^2(dof) H_1$ | Significance  | $\chi^2(dof) H_2$ |
|-------------|-------------------|-------------------|---------------|-------------------|
|             |                   |                   | $(H_1/H_0)$   |                   |
| J1420-6048  | 31.10(15)         | 21.27(13)         | 1.38 $\sigma$ | 22.46(15)         |
| J1648-4611  | 47.15(14)         | 21.37(12)         | 2.38 $\sigma$ | 41.61(14)         |
| J1702-4128  | 12.70(8)          | 3.57(6)           | 2.01 $\sigma$ | 8.54(8)           |
| J1718-3825  | 53.57(15)         | 25.61(13)         | 2.40 $\sigma$ | 29.52(15)         |
| J2021+3651  | 51.25(14)         | 10.07(12)         | 3.86 $\sigma$ | 41.85(14)         |
| J2240+5832  | 19.66(11)         | 8.01(9)           | 2.11 $\sigma$ | 8.39(11)          |
| Combined    | 215.42(77)        | 89.9(65)          | 5.52 $\sigma$ | 152.37(75)        |

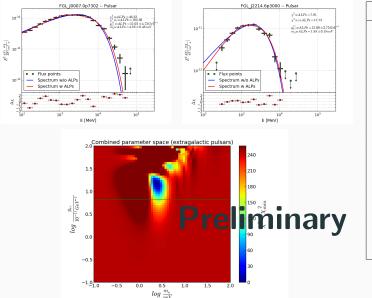
A comparison of the  $\chi^2$  values obtained for the three hypotheses.

- Individual spectral fit:  $\mathrm{H}_1$  is quite significant.
- Combined spectral fit:  $H_2/H_0$  although deteriorates, holds a significance level 4.6  $\sigma$ .


#### Comparison with other parameter space

Limits on ALPs parameter space in the  $(m_a, g_{a\gamma\gamma})$  plane.




J Majumdar, F Calore and D Horns; JCAP04(2018)048.

#### Further studies with non-Galactic plane pulsars



Pulsar name J0007.0+7302 J0030.4+0451 J0357.9+3206 J0614.1-3329 11231.2-1411 J1311.8-3430 J1836.2+5925 J2055.8+2539 J2124.7-3358 J2214.6+3000 J2229.7-0833 J2241.6-5237 J2302.7+4443

#### Further studies with non-Galactic plane pulsars



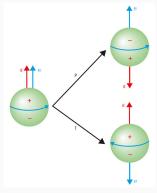
Pulsar name J0007.0+7302 J0030.4+0451 J0357.9+3206 J0614.1-3329 11231.2-1411 J1311.8-3430 J1836.2+5925 J2055.8+2539 J2124.7-3358 J2214.6+3000 J2229.7-0833 J2241.6-5237 J2302.7+4443

- Indications for ALPs in case of Fermi LAT data of Galactic pulsar candidate.
- Photon-ALPs mixing is non-linear in the spiral arms and in the large scale field of the inner Galaxy.
- Favourite ALPs mass :  $(3.54^{+0.5_{stat.}}_{-0.2_{stat.}} \pm 0.2_{syst.})$  neV.
- Favourite Photon-ALPs coupling constant:  $(2.3^{+0.3}_{-0.4}{}_{\text{stat.}} \pm 0.4_{\text{syst.}}) \times 10^{-10} GeV^{-1}.$
- Combined significance: 4.6  $\sigma$ .
- The resulting mixing parameters are quite magnetic field model dependent.
- Similar effects observed with Pshirkov magnetic field model.

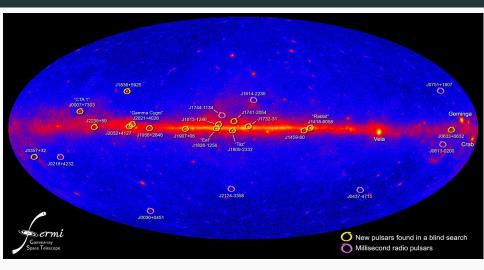
# Thank you for listening. Any questions?



# Backup slides

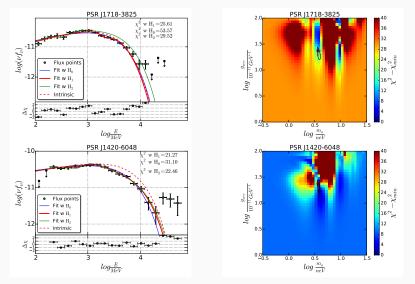

#### Axion

• QCD vacuum CP-violating term:


$$L \sim \frac{\alpha_s}{8\pi} \theta G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \tag{15}$$

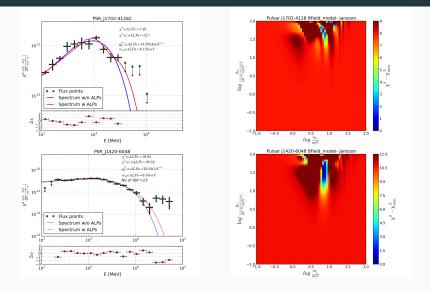
- Observable effect: electric dipole moment of the neutron, strength depends on θ, expected of order unity.
- Solution: introduce new symmetry U(1) PQ, spontaneously broken at scale  $f_a$ .






#### Gamma ray sky with Fermi LAT




No of  $\gamma$ -ray Pulsars: 160, PWN: 9. [3FGL catalog, Fermi LAT Collaboration 2015.]

#### **Pulsar spectra**



Left panel: Best-fit model of the spectrum of Pulsar candidates. Right panel: The  $\chi^2$  scan as a function of  $g_{a\gamma\gamma}$  and  $m_a$ .

#### **Pulsar spectra**



**Figure 2:** Best-fit model of the spectrum of Pulsar candidates. Right panel: The  $\chi^2$  scan as function of photon-ALPs coupling and ALPs mass.

#### back up slides

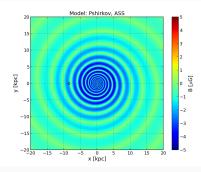
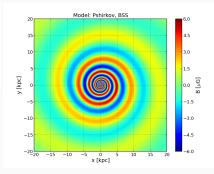



Figure 3: Bfield model: Pshirkov ASS model



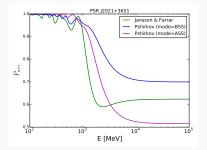
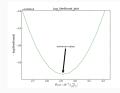


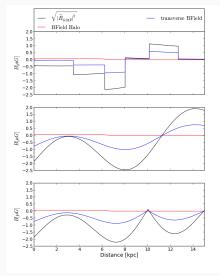

Figure 4: Bfield model: Pshirkov BSS model



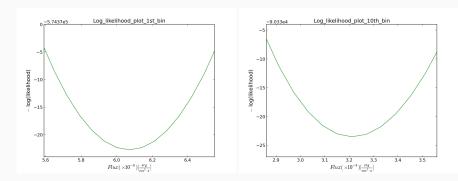
Photon (red thin line) and ALPs (blue thick line) intensity along the line of sight towards PSR J2021+3651. The green dashed line marks the transversal magnetic field.


#### Fermi-LAT data analysis




# The photon survival probability as a function of energy.

$$\left(\frac{dN}{dE}\right)_{bin} = (1 - P_{\gamma \to a} \left(E, g_{a\gamma}, m_a\right)). \left(\frac{dN}{dE}\right)_{model, bin}$$
(16)


- We perform a fit to the data, minimising the  $\chi^2$  function.
- Log(likelihood) has a parabolic pattern.
- Energy dispersion matrix derived for all the EDISP event types together.



Log-likelihood as a function of flux for sixth energy bin of PSR J2021+3651.



**Figure 5:** Bfield model:Magnetic field along the line of sight of the pulsar J2021 +3651.Top panel for the model of Jansson-Farrar, middle panel for the model of Pshirkov in BSS, bottom in ASS mode.

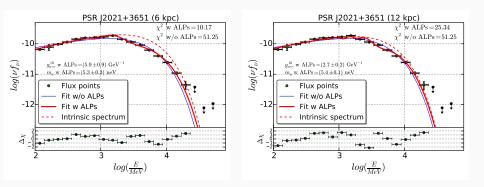


**Figure 6:** Log-likelihood as a function of flux for first energy bin of PSR J2021+3651.

**Figure 7:** Log-likelihood as a function of flux for 10th energy bin of PSR J2021+3651.

- Calculation of significance level: F-test is done.
- F-test: Test statistic has a F-distribution under the null hypothesis.
- F-test: statistical test to compare how well the model fits the population.
- F-number is constructed with :

$$f := \frac{(\chi_{\rm H_0}^2 - \chi_{\rm H_1}^2)/(m-k)}{\chi_{\rm H_1}^2/(n-m)} \sim F_{m-k,n-m}.$$
 (17)


n = sample size,

m= no of parameters with ALPs

hypothesis,

*k*= no of parameters with no ALPs hypothesis.

# Contour dependence on magnetic field parameters and the distance to the source



Reducing the distance by 4 kpc, we obtain a change  $\approx$  2.4  $\times$  10<sup>-10</sup> GeV<sup>-1</sup>, corresponding to around 70% enhancement in  $g_{a\gamma\gamma}$ .

When increasing the distance by 2 kpc, instead,  $g_{a\gamma\gamma}$  changes by 24% and the mass varies around 1 neV.

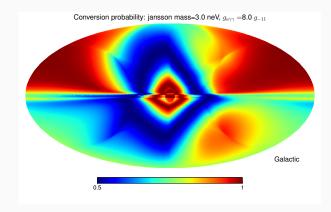



Figure 8: Conversion probability of photon to axion in allsky map.

# Contour dependence on magnetic field parameters and the distance to the source

The variation of ALPs parameters calculated assuming diffrent Bfield and different distance for the global analysis.

| Global analysis                | $g_{a\gamma\gamma}$ (in             | <i>m</i> <sub>a</sub> (in |
|--------------------------------|-------------------------------------|---------------------------|
|                                | $	imes 10^{-10} \mathrm{GeV}^{-1})$ | neV)                      |
| Bfield increased by 20%        | 2.1(4)                              | 3.7(3)                    |
| Bfield decreased by 20%        | 2.6(2)                              | 3.4(3)                    |
| Distance increased by 1kpc     | 2.3(4)                              | 3.7(3)                    |
| Distance reduced by 1kpc       | 2.6(3)                              | 3.6(3)                    |
| Distance increased by 1kpc and | 1.9(3)                              | 3.7(3)                    |
| Bfield 20% increased           |                                     |                           |
| Distance reduced by 1kpc and   | 2.7(4)                              | 3.6(3)                    |
| Bfield 20% decreased           |                                     |                           |

• 
$$(m_a) = (3.6^{+0.5_{\text{stat.}}}_{-0.2_{\text{stat.}}} \pm 0.2_{\text{syst.}})$$
 neV.

• 
$$(g_{a\gamma\gamma}) = (2.3^{+0.3_{\text{stat.}}}_{-0.4_{\text{stat.}}} \pm 0.4_{\text{syst.}}) \times 10^{-10} \text{ GeV}^{-1}.$$