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OVERVIEW

• Solar KK axions (and where to find them)

• NEWS-G detector and signal

• Data analysis, simulations, and preliminary results
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QCD AXION
• Peccei-Quinn solution to strong CP problem

- Problem: QCD Lagrangian contains a CP violating term, but no CP 
violation is observed in the strong interaction.

- Hypothesis: new spontaneously broken symmetry is introduced to 
“remove” the CP violating term, giving rise to a new pseudo-scalar 
particle, the QCD axion.

- The characteristics of this particle depend mainly on the symmetry 
breaking scale (constrained by cosmological observations).
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If Dark Matter is QCD axion, its mass ~ 10-6 -10-3  eV



AXION (AND AXION-LIKE PARTS)
COUPLING TO PHOTONS

Decay into two photons Primakoff effect
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Expected decaytime ~1030 - 1045 days.
Compare with age of Universe: ~1013 days

Only in presence of magnetic field 
(includes that of an atom)
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Axion and 
ALPs searches

(with ~10T 
magnets)

Expected decaytime ~1030 - 1045 days.
Compare with age of Universe: ~1013 days

Only in presence of magnetic field 
(includes that of an atom)



KALUZA-KLEIN AXION
• Extra dimensions theories have been proposed to solve the gauge 

hierarchy problem.

• In such theories, the QCD axion gains a tower of excitations with 
heavier masses.

• For two extra dimensions and a quantum gravity scale of 100 TeV, 
the spacing between excitations is  ~1eV.

• High mass, low decaytime “axions” are possible 
without changing the symmetry breaking scale.
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AXION (AND AXION-LIKE PARTS)
COUPLING TO PHOTONS

Decay into two photons

1 keV axion decaytime ~1012 - 1018 days.
Observable for large densities

Primakoff effect

Only in presence of magnetic field 
(includes that of an atom)
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Heavy KK 
axions?



SOLAR KK AXION
• For heavier masses of the axion, a proportion of solar axions are trapped in the gravitational field of the Sun.

• The density of trapped axions in the Solar System is then large enough to be 
detected.

• Expected density and distribution of trapped axions simulated by DiLlela and Zioutas in 2003:
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CASE FOR KK AXION
• Corona heating 

problem: Solar corona 
hotter than 
Chromosphere. External 
irradiation of the Sun?

• Hypothesis: KK 
axions decay in solar 
orbit, heating up the 
corona.

• KK axion mass > 1 keV
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http://www.mn.uio.no/astro/english/research/projects/solaralma/

http://www.mn.uio.no/astro/english/research/projects/solaralma/


CASE FOR KK AXION
• X-rays from dark side 

of the Moon: interaction 
between Solar wind and 
surface of the Moon not 
enough to justify these 
emissions.

• Hypothesis: solar KK 
axions decaying between 
the Moon and ROSAT.
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Nature 349 (1991) 583.



NEWS-G : THE DETECTOR
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Gas 
(e.g, Neon + 0.7% CH4 at 3 bar)

High Voltage 
 Electrode 
(e.g., 2500V)

Grounded

SEDINE 
60 cm copper 
vessel detector 
at LSM

Spherical Proportional Counter



NEWS-G : WORKING 
PRINCIPLE
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E ~ 1/r2

Preamp
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NEWS-G : WORKING 
PRINCIPLE

• Primary Ionisation
• for Neon, average of 1 electron per 36eV

• Electron Drift
• Drift time, up to ~ 500 μs

• Diffusion (“spread”), up to ~ ±20 μs

• Avalanche
• ~7000 ion/electron pairs formed per primary 

electron

• Signal Formation
• Current induced on electrode by ions

• Preamplifier integrates current, with ~ 50 μs 
decay
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SIGNAL

E ~ 1/r2

Preamp



DATA 
PROCESSING

• Pulse as recorded on top. Raw pulse 
amplitude is biased for longer events.

• From understanding of the ion-
induced current and preamplifier 
response, deconvolve raw pulse, then 
integrate it. This removes bias.

• Amplitude is an estimator of the 
energy of the event. Risetime is an 
estimator of the distance between 
the sensor and the energy deposition. 
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AXIONS IN SPC
• Axion decays into two back-to-

back photons. Photons are 
captured at different sites, which 
will be seen as two different pulses 
within the same event window 
(unlike for solid or liquid 
detectors!).

• Axion decay rate depends only on 
volume of detector, not mass! 
Having a gas detector is not a 
drawback for exposure.
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DOUBLE EVENT EXAMPLE

Run: pd02b000 , evt: 73162
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ADAPTED PROCESSING:
MULTIPLE PULSE ANALYZER

• Deconvolve response of detector from event.
• Separate full window into smaller windows where a pulse 

was found.
• Get the amplitude, risetime, width, etc. for each window.

Deconvolved Deconvolved,
Integrated

1st pulse 2nd pulse 1st pulse

2nd pulse
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Run: pd02b000 , evt: 73162



MPA: PROOF OF CONCEPT
• Bi-Po 214, half-life of Polonium is 160 

microseconds, we expect to see 
both events in the same window.

• Calibration run with 222Rn:

All events: 141281

7.7 MeV 214Po

5.5 MeV 222Rn
6.0 MeV 218Po
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MPA: PROOF OF CONCEPT
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Effective 
rejection of 
single pulse 

events



SEDINE PHYSICS DATA
• 42 day long background run with 3.1 bar of Neon

• 60 cm diameter, for ~0.113 m3, or ~4.75 m3.day

• Total number of events before cuts ~ 1,640,000

• Data was already used to produce low mass WIMP exclusion limits 
(Astropart.Phys. 97 (2018) 54-62)

• Reused now for solar KK axion search:
- Select events with two pulses of similar energy, with second one 

being wider than first one.
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SIMULATIONS
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SIMULATIONS
• Attenuation length of photon depends on 

energy, gas type, and pressure. Need sufficient 
separation to discriminate both positions, but 
not so much that photons leave the detector.
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SIMULATIONS
• Attenuation length of photon depends on 

energy, gas type, and pressure. Need sufficient 
separation to discriminate both positions, but 
not so much that photons leave the detector.

• We can simulate axion events, from 
attenuation length of photons (NIST data), 
drift time and diffusion of electrons 
(COMSOL + Magboltz), and finally response 
function of detector.

• Simulations allow determination of detector 
sensitivity, choice of parameter cuts, and of 
optimal run conditions.
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SIMULATIONS
• Attenuation length of photon depends on 

energy, gas type, and pressure. Need sufficient 
separation to discriminate both positions, but 
not so much that photons leave the detector.

• We can simulate axion events, from 
attenuation length of photons (NIST data), 
drift time and diffusion of electrons 
(COMSOL + Magboltz), and finally response 
function of detector.

• Simulations allow determination of detector 
sensitivity, choice of parameter cuts, and of 
optimal run conditions. Minimum radius difference 

~ 2.5 cm (from simulations)
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SEDINE SOLAR KK AXION 
EXPECTED SIGNAL

Blue: total axion decay rate (Morgan et al, 2005) 
Black: rate accounting for detector sensitivity, ~25% total
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SEDINE SOLAR KK AXION 
EXPECTED SIGNAL

Blue: total axion decay rate (Morgan et al, 2005) 
Black: rate accounting for detector sensitivity, ~25% total

From simulations of 
solar KK axion 

model, expect 0.095 
events for SEDINE’s 

background run

 19



SEDINE SENSITIVITY
• We can use simple Poisson 

statistics to derive both the 
background-free and the 
preliminary exclusion limits 
based on number of observed 
events.

• We use the MPA on the 
background run, and find 73 
events.

• We expect these events to be 
non-axion background, but a 
detailed study is necessary 
before performing background 
subtraction.
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NEWS@SNO
UPCOMING NEW DETECTOR
Exposure improvement: 

- 140 cm diameter (instead of 60) ~12.5 times more volume!

Background improvement:
- 25 cm of lead shielding, 34 cm of polyethylene shield (instead of 15 and 28, respectively). 
- The inside of the sphere will be electroplated before data taking for higher surface purity.
- Will be installed at SNOLAB (Sudbury, Canada), World’s deepest clean-room, in summer 2019.
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CONCLUSION
• Axions, and their extension, KK axions, have compelling 

arguments in favour of their existence, and trapped solar KK 
axions could be detected with SEDINE.

• Preliminary results based on existing data suggest NEWS-G 
can set leading exclusion limits on solar KK axions. Further 
analysis required before definitive results.

• The new, larger NEWS-G detector at SNOLAB will likely be 
able to probe the preferred parameter space of the solar KK 
axion model.
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Thank you for your attention!
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• Queen’s  University Kingston –  G Gerbier, P di Stefano,  R Martin, G Giroux, T Noble, D Durnford, S Crawford, M. Vidal,
     A Brossard,  F Vazquez de Sola, Q Arnaud, K Dering, J McDonald, M Clark, M Chapellier, A Ronceray, P Gros, J Morrison, C. Neyron
–Copper vessel and gas set-up specifications, calibration, project management 
–Gas characterization, laser calibration, on smaller scale prototype
–Simulations/Data analysis

• IRFU (Institut de Recherches sur les Lois fondamentales de l’Univers)/CEA Saclay  - I Giomataris, M Gros, C Nones,  I Katsioulas, T 
Papaevangelou, JP Bard, JP Mols, XF Navick, 
–Sensor/rod (low activity, optimization with 2 electrodes)
–Electronics (low noise preamps, digitization, stream mode)
–DAQ/soft

• LSM (Laboratoire Souterrain de Modane), IN2P3, U of Chambéry - F Piquemal, M Zampaolo, A Dastgheibi-Fard
–Low activity archeological lead
–Coordination for lead/PE shielding and copper sphere 

• Thessaloniki University – I Savvidis, A Leisos, S Tzamarias
–Simulations, neutron calibration
–Studies on sensor 

• LPSC (Laboratoire de Physique Subatomique et Cosmologie) Grenoble - D Santos, JF Muraz, O Guillaudin 
–Quenching factor measurements at low energy with ion beams

• Pacific National Northwest Lab– E Hoppe, R. Bunker
–Low activity measurements, Copper electroforming 

• RMCC (Royal Military College Canada) Kingston – D Kelly, E Corcoran
– 37 Ar source production, sample analysis  

• SNOLAB –Sudbury – P Gorel
–Calibration system/slow control

• University of Birmingham– K Nikolopoulos, P Knights, R Ward
–Simulations, analysis, R&D 

• Associated lab : TRIUMF  - F  Retiere  
–  Future R&D on light detection, sensor  

2018  Summer : +  
C. Garrah, A. Goodman, W. Salmon, T. Ward



(A BUNCH OF) EXTRA SLIDES
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NEWS-G : BACKGROUND
•Sources:

• Cosmic radiation

• Cosmic-activated copper

• Uranium and Thorium decay chains

•Generate alphas, gammas, neutrons 
and electrons

•Shielding:

• Polyethylene (n)

• Lead (gammas)

• Copper (radiation from lead)
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PARAMETER EXTRACTION : 
DDEC
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• After  DDec,  we  recover  a  signal  that  goes back  to  (flat)  baseline  in  a  few  tens  of  µs  at  most:  model 
consistent with data! 

• Integral of deconvolved pulse gives amplitude and risetime of event 
• Applying the DDec method to data also corrects the ballistic deficit 
• Problem: DDec method greatly amplifies noise
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STRONG CP PROBLEM
• The QCD Lagrangian contains a CP violating term:

• A non-zero value of theta gives rise to an electric 
dipole moment for the neutron dn ~ 10-16 e*cm

• However, current measurements of dn < 10-27 e*cm. 
That implies theta < 10-9. Why such a small value?
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PECCEI-QUINN SOLUTION
• Introduce a new UPQ(1) symmetry, spontaneously broken at some 

scale fPQ.

• The breakdown of the symmetry leads to the existence of a 
pseudo-Goldstone boson, the axion, which couples to gluons. The 
new QCD Lagrangian becomes:

• The potential for the axion field has a minimum at …,  , cancelling 
the CP-violating term, and solving the strong CP problem 
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QCD AXION PROPERTIES
• Mass

• Coupling constant to photons

• Decaytime

• Only one parameter, the symmetry-breaking scale!

Model dependent,
order ~1

For Axion-like Particles (ALPs), only the decaytime 
relationship is still valid (others are model-dependent)
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AXION SEARCH: MPA CUTS
• Round 1:

• Two pulses or more, both of amplitude larger than 1000 ADUs (~400 eV) 

• Round 2, also add:

• Amplitude of both pulses are “close” (highest is not more than twice the lowest + 10000 
ADUs) 

• Sum of both pulses is greater than 5000 ADUs (~2 keV) and lower than 50000 ADUs 
(~20 keV) 

• Risetime of both pulses smaller than 70 mus 

• Risetime of second pulse is longer than of first 

• “width” of both deconvolved pulses are less than 150 mus 

• Centre of both pulses within 500 microseconds of each other
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SEDINE BACKGROUND:
RUN PD02B000

• Total number of events: 1639360

Round 1 cuts: 
1677 events

Round 2 cuts: 
73 events
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SEDINE EFFICIENCY
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Maximum efficiency for 
an attenuation length of 
4-9 cm for the photons.

• Simulate axion events 
at different energies, 
see how many pass the 
cuts, to figure out 
efficiency.

• When maximizing 
efficiency, at the analysis 
level, have to be careful not 
to increase false positive 
rate, i.e. non-coincident 
events reconstructed as 
such (right now, 2 in a 
million pointlike events 
pass the cuts)

Compare to radius of 
sphere, 30 cm



SEDINE EFFICIENCY

Green curve: low MPA threshold
Red curve: high MPA threshold
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PLOTS 
(SIMULATED PULSES)
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PLOTS 
(PD02B000)



BIPO 214 EVENT
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BIPO214 EVENT
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PD02B000 DOUBLE EVENT
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PD02B000 DOUBLE EVENT
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PD02B000 DOUBLE EVENT
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PD02B000 SIMULATED AXION
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PD02B000 SIMULATED AXION
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PD02B000 SIMULATED AXION
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PD02B000 SIMULATED AXION
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PD02B000 SIMULATED AXION
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PD02B000 SIMULATED AXION
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PHYSICS CASE FOR AXIONS
• As Cold Dark Matter: created by the vacuum realignment mechanism. For all DM 

to be axionic, ma ~ 10-6 - 10-3 eV. Lower masses are ruled out by density of DM, higher 
masses mean DM is mostly something else.

• Gamma transparency of the Universe: there is an anomalous transparency 
of the Universe to TeV gamma-rays at large optical depth. Could be explained by axion-
photon oscillations. This would need ma < 10-7 eV

• Cosmic ALP background radiation: observed X-ray excess from the Coma 
cluster could come from the conversion of such background in the magnetic field of 
the cluster. This would need ma < 10-12 eV

• White Dwarf cooling: some hints of stars cooling faster than expected could be 
explained by them radiating extra energy as axions. 
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ALPS EXCLUSION LIMIT
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ALPS EXCLUSION LIMIT

We need a ~10T magnet to see 
anything, and favoured region orders of 
magnitude below our energy sensitivity
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A NOTE ON THE 
COMPETITION

• XMASS-I (Kamioka)
• 2018 paper setting first limits on solar KK axions.
• 832 kg liquid Xenon tank surrounded by PMTs.
• No coincidence discrimination, instead rely on annual signal modulation due to 

change in distance from the Earth to the Sun, over 500 days.

• DRIFT (University of Sheffield)
• Low pressure gas TPC (0.05 bar).
• No results papers yet, but presentation mentioning they can do exposure of 

1m3*year, and with the addition of a lead shield (currently absent) to reduce gamma 
background. Their projected sensitivity with the shield is much better than ours.

• Other TPCs?
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PULSE TYPE: POINTLIKE
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PULSE TYPE: “ELECTRONIC” EVENTS
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PULSE TYPE: TRACK
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