

RESONANT AND BROADBAND HALOSCOPE SEARCHES FOR HIDDEN PHOTON DARK MATTER USING THE HERA RESONANT CAVITY AT FREQUENCIES BELOW 500 MHZ.

Dr. Le Hoang Nguyen

1. HIDDEN PHOTON DARK MATTER SEARCH USING RESONANT CAVITY

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\chi}{2}F_{\mu\nu}X^{\mu\nu} + \frac{m_X^2}{2}X_{\mu}X^{\mu} + ej_{\mu}A^{\mu}.$$

 χ :kinetic mixing constant.

 X_{μ} :U(1) hidden field.

WISPDMX: Weakly Interacting Slim Particle Dark Matter Experiment.

Located in building 68 room 11, Insti. for Experimental Physics, Uni. HH.

$$P = \kappa \chi^2 m_{\gamma'} \rho_{\text{CDM}} QV \mathcal{G}$$
$$\mathcal{G} = \frac{|\int dV \mathbf{A}(\mathbf{x}) \cdot \hat{\mathbf{n}}|^2}{V \int d^3 \mathbf{x} |\mathbf{A}(\mathbf{x})|^2}.$$

Ref: Jaeckel 2013, arXiv:1303.182

2. BROADBAND SEARCH USING RESONANT CAVITY

- Off-resonance region is still sensitive to HP dark matter.
- Broadband search cover a wide mass range (!)

$$m_{\gamma'} = \frac{f}{500 \text{ MHz}} 2.07 \mu \text{ev}$$

3. DEVELOPMENTS OF WISPDMX

- A high-efficiency broadband acquisition covers 500 MHz at the resolution of 50 Hz.
- The fast frequency calibration tracks the resonance.
- The signal search over the high-resolution spectrum is supported by the study on light dark matter signal profile.

5. PRELIMINARY RESULT FROM THE FIRST SCIENCE RUN

- First Science Run: 23rd October 2017 to 2nd November 2017, 61.1 hours of data.
- Lowest detectable power is at the level of 10-18
 Watt .
- Preliminary result: We found no signal which could emerge from the hidden photon dark matter in the 500 MHz broadband spectrum.

5. PRELIMINARY RESULT FROM THE FIRST SCIENCE RUN

Thanks you for attention.