SMASH-ing Vacuum Metastability

C.R. Das

Bogoliubov Laboratory of Theoretical Physics (BLTP) Joint Institute for Nuclear Research (JINR) Dubna, Russian Federation

in collaboration with

Timo J. Kärkkäinen and Katri Huitu Department of Physics, University of Helsinki, Finland

Axion Wimp 2018

The 14th Patras Workshop on Axions, WIMPs and WISPs, 18 - 22 June 2018 Hamburg, Germany

Problems of the SM already have possible solutions

Biggest problems in physics (grand unification not included):

- **1** Strong CP problem \rightarrow axion [Peccei, Quinn 1977]
- ② Neutrino masses → seesaw [Minkowski, Yanagida, Glashow, Gell-Mann,... 1977-80]
- Saryonic asymmetry of the Universe → leptogenesis [Fukugita, Yanagida 1986]
- Oark matter \rightarrow sterile neutrinos, axions, ALPs, WIMPs, LSPs ...
- Vacuum metastability \rightarrow extended scalar sector

Partial solutions:

Not yet a theory which combines all of the solutions together, however ν MSM [Asaka, Shaposnikov 2005] and some others are close enough

Combined solution:

SMASH combines all the solutions in one framework at mass scale $\sim 10^{11}~GeV$ [Ballesteros, Redondo, Ringwald, Tamarit 1608.05414, 1610.01639, Ringwald 1610.05040]

SM + Axion + Seesaw + Higgs portal inflation (SMASH)

Minimal model to accomodate the proposed solutions:

 $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{PQ_{SMASH}}$

- Three heavy right-handed sterile Majorana neutrinos N_i
- 2 Colour triplets $Q \sim \mathbf{3}$ and $\widetilde{Q} \sim \overline{\mathbf{3}}$
- **③** Singlet scalar ρ
- Axion A

Peccei-Quinn symmetry and Lagrangian

Introduction of the PQ_{SMASH} charges and Y_{SMASH} hyper-charges:

U(1) _{PQ_{SMASH}}	q_L	U _R	d _R	L_L	N	ℓ_R	Q	Õ	σ	Н
PQ _{SMASH}	1/2	-1/2	-1/2	1/2	-1/2	-1/2	-1/2	-1/2	1	0
Y _{SMASH}	1/3	-4/3	2/3	-1	0	2	1/3 or –2/3	—1/3 or 2/3	1	1

Induces $Q - d_R$ mixing and decay of Q to d_R :

$$-\mathcal{L}_{Yukawa} = Y_{ij}^{U} q_{Li} \varepsilon H u_{Rj} + Y_{ij}^{d} q_{Li} H^{\dagger} d_{Rj} + G_{ij} L_{Li} H^{\dagger} \ell_{Rj}$$
$$+ \underbrace{Y_{ij}^{F} L_{Li} \varepsilon H N_{j}}_{I} + \frac{1}{2} Y^{N} \sigma N_{i} N_{j}$$

neutrino mass and leptogenesis

+ $Y^{Q}\widetilde{Q}\sigma Q + y_{i}^{Q}\sigma Q d_{Ri}$ + h.c.

strong CP problem

Scalar sector

Higgs portal coupling stabilizes Higgs potential by giving extra contribution to $\beta_{\lambda\mu}$ [Gonderinger et al 2010]

or by tree-level threshold effect setting $\lambda_{H\sigma}^2/\lambda_{\sigma} \sim 10^{-2}$:

[Lebedev 2012, Elias-Miro et al 2012]

$$\mathcal{L}_{\text{scalar}} = -R\left(\frac{1}{2}M^{2} + \xi_{H}H^{\dagger}H + \xi_{\sigma}|\sigma|^{2}\right) + \lambda_{H}\left(H^{\dagger}H - \frac{v^{2}}{2}\right)^{2} + \lambda_{\sigma}\left(|\sigma|^{2} - \frac{v_{\sigma}^{2}}{2}\right)^{2} + 2\lambda_{H\sigma}\left(H^{\dagger}H - \frac{v^{2}}{2}\right)\left(|\sigma|^{2} - \frac{v_{\sigma}^{2}}{2}\right)$$
scalar potential metastability

$$\sigma = \frac{1}{\sqrt{2}} (v_{\sigma} + \rho) e^{i A / v_{\sigma}}$$

Axion sector

Lepton number symmetry is spontaneously broken, when σ develops VEV, its phase *A* becoming the associated Nambu-Goldstone boson, which works as axion in SMASH, having a mass:

$$m_{\mathcal{A}} pprox 57 imes rac{10^{11} \; ext{GeV}}{f_{\mathcal{A}}} \; \mu ext{eV}, \quad ext{with} \quad f_{\mathcal{A}} = v_{\sigma}$$

- Axion in SMASH will have a mass on the range $10 200 \ \mu eV$
- Axion chosen as dark matter candidate instead of sterile neutrino
- Axion-dominated dark matter requires the axion decay constant to be in a specific interval,

$$3 imes 10^{10}~{
m GeV} \lesssim extsf{v}_{\sigma} \lesssim 5 imes 10^{11}~{
m GeV}$$

to explain the total dark matter abundance

- larger $v_{\sigma} \Rightarrow$ overproduction of DM
- 2 smaller $v_{\sigma} \Rightarrow$ partly axionic DM

Neutrino sector

Basic version of SMASH utilizes Type-I seesaw mechanism:

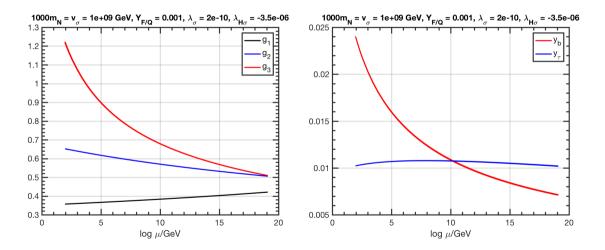
[Minkowski, Yanagida, Glashow, Gell-Mann, Mohapatra,... 1977-80]

$$M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & Y^F v \\ Y^{F^T} v & Y^N v_{\sigma} \end{pmatrix},$$

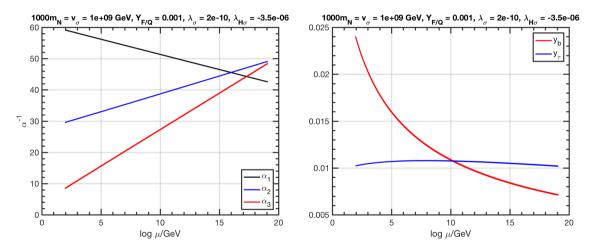
$$m_{\nu} = -M_D M_M^{-1} M_D^T = 0.04 \text{ eV} \times \frac{10^{11} \text{ GeV}}{v_{\sigma}} \times \frac{-Y^F (Y^N)^{-1} Y^{F^T}}{10^{-4}}$$

- 2 Vanilla leptogenesis scenario requires the existence of heavy neutrinos, with $M_M \gtrsim 3 \times 10^8 \text{ GeV} \Rightarrow$ too unstable to be a DM candidate
- Seesaw scale, being intermediate between SM and GUT scales, slides well into SMASH framework, with RH neutrino mass given by VEV of σ
- Such a heavy scale implicates negligible active-sterile mixing, making it invisible to neutrino oscillation experiments
- Solution Large v_{σ} and portal coupling will induce large corrections to μ_{H}^{2}

Visions from numerical solutions of RGE's

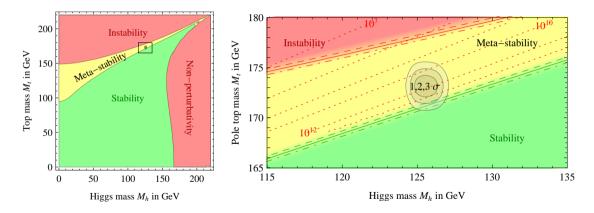

[Das, Kärkkäinen, Huitu 18XX.XXXX]

Benchmark point


YF	10 ⁻³			
Y _N	0.0141			
Y _Q	10 ⁻³			
λ_{σ}	$5 imes 10^{-9}$			
V_{σ}	10 ¹⁰ GeV			

- Two-loop corrections to β-functions produced by SARAH [Ballesteros, Redondo, Ringwald, Tamarit 1610.01639]
- ⁽²⁾ We solved numerically the 14 coupled renormalization group differential equations with respect to Yukawa $(Y^t, Y^b, Y^{\tau}, Y^F, Y^N, Y^Q)$, gauge (g_1, g_2, g_3) and scalar $(\mu_H, \mu_S, \lambda_H, \lambda_S, \lambda_{H\sigma})$ couplings, ignoring the light SM degrees of freedom
- We used MATLAB's ode45-solver

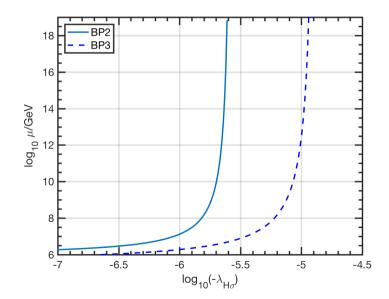
No grand unification



No grand unification

Brink of the abyss

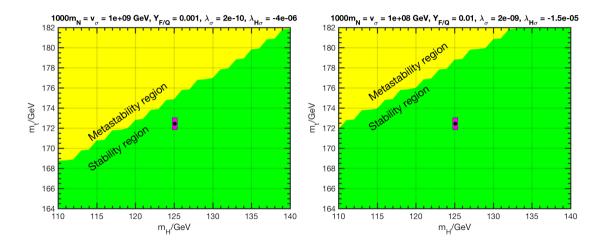
The best-fit point for m_t and m_H implies that we live in a metastable world, however with very long vacuum decay timescale:


 $m_t = 172.44 \pm 0.60 \text{ GeV}, \quad m_H = 125.09 \pm 0.32 \text{ GeV}$

Metastability correlations

$$\begin{split} \beta_{\lambda_{H}} = & \beta_{\lambda_{H}}^{SM} + \frac{1}{16\pi^{2}} \left[4\lambda_{H\sigma}^{2} + 4\mathrm{Tr}[FF^{\dagger}]\lambda_{H} - 2\mathrm{Tr}\left[FF^{\dagger}FF^{\dagger}\right] \right] + \frac{1}{(16\pi^{2})^{2}} \left[\frac{18}{125} g_{1}^{4}q^{2} \left(25\lambda_{H} - 6g_{1}^{2}\right) \right] \\ & -10g_{2}^{2} \left(-40\lambda_{H}\lambda_{H\sigma}^{2} - 32\lambda_{H\sigma}^{3} - 24y^{2}\lambda_{H\sigma}^{2} + g_{1}^{2} \left(\frac{3\mathrm{Tr}[FF^{\dagger}]\lambda_{H}}{2} - \frac{3g_{2}^{2}\mathrm{Tr}[FF^{\dagger}]}{10} \right) \right] \\ & + \frac{15}{2}g_{2}^{2}\mathrm{Tr}[FF^{\dagger}]\lambda_{H} - \frac{9g_{1}^{4}}{100}\mathrm{Tr}[FF^{\dagger}] - \frac{3g_{2}^{4}\mathrm{Tr}[FF^{\dagger}]}{4} - 14\mathrm{Tr}\left[GG^{\dagger}FF^{\dagger}\right]\lambda_{H} - 48\mathrm{Tr}[FF^{\dagger}]\lambda_{H}^{2} \\ & - \mathrm{Tr}\left[FF^{\dagger}FF^{\dagger}\right]\lambda_{H} - 2\mathrm{Tr}\left[FF^{\dagger}GG^{\dagger}GG^{\dagger}\right] - 2\mathrm{Tr}\left[FF^{\dagger}FF^{\dagger}GG^{\dagger}\right] + 10\mathrm{Tr}\left[FF^{\dagger}FF^{\dagger}FF^{\dagger}\right] \\ & -3\mathrm{Tr}[Y^{\dagger}YF^{\dagger}F]\lambda_{H} - 4\mathrm{Tr}[Y^{\dagger}Y]\lambda_{H\sigma}^{2} + 2\mathrm{Tr}[Y^{\dagger}F^{t}F^{*}YF^{\dagger}F] + 2\mathrm{Tr}[Y^{\dagger}YF^{\dagger}FF^{\dagger}F] \right], \end{split}$$

A large value of $\lambda_{H\sigma}$ can give positive correction at one-loop level to push λ_H out of the valley of instability

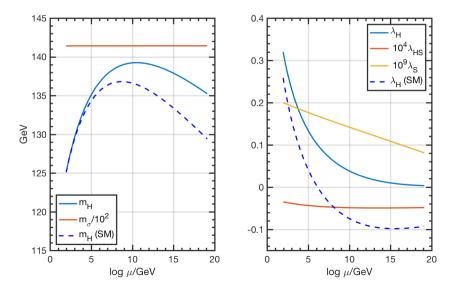

The correlations of other SMASH parameters to λ_H are small

$$m_t = 172.44 \text{ GeV}$$

 $m_H = 125.09 \text{ GeV}$

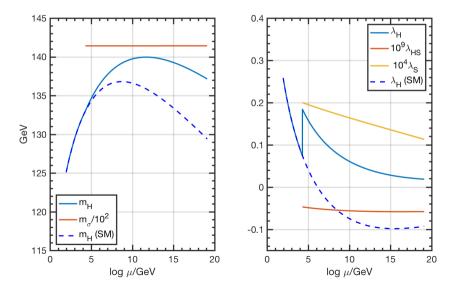
Metastability problem runs away upon the activation of $\lambda_{H\sigma}$

Scalar potential stability regions for $\lambda_{H\sigma} \approx -10^{-5}$


The Veltman condition: $Str \mathcal{M}^2 = 0$

$$\beta_{\mu_{H}^{2}} = \underbrace{\beta_{\mu_{H}^{2}}^{SM}}_{\mu_{H}^{2}} + \frac{1}{16\pi^{2}} \underbrace{\left(4\lambda_{H\sigma}\mu_{\sigma}^{2} + 2\text{Tr}[FF^{\dagger}]\mu_{H}^{2}\right)}_{4} + \frac{1}{(16\pi^{2})^{2}} \left[\frac{9}{5}g_{1}^{4}q^{2}\mu^{2}_{H} - \mu_{\sigma}^{2}\left(16\lambda_{H\sigma}^{2} + 24y^{2}\lambda_{H\sigma}\right)\right. \\ \left. - 4\mu_{H}^{2}\lambda_{H\sigma}^{2} + \mu_{H}^{2}\left(\frac{3g_{1}^{2}\text{Tr}[FF^{\dagger}]}{4} + \frac{15g_{2}^{2}\text{Tr}[FF^{\dagger}]}{4} - 24\text{Tr}[FF^{\dagger}]\lambda_{H} - 7\text{Tr}\left[GG^{\dagger}FF^{\dagger}\right] \\ \left. - \frac{9\text{Tr}\left[FF^{\dagger}FF^{\dagger}\right]}{2}\right) - \frac{3}{2}\text{Tr}[Y^{\dagger}YF^{\dagger}F]\mu_{H}^{2} - 4\text{Tr}[Y^{\dagger}Y]\lambda_{H\sigma}\mu_{\sigma}^{2}\right],$$

$$\begin{split} \beta_{\mu_{\sigma}^{2}} = & \frac{1}{16\pi^{2}} \left[8\mu_{H}^{2} \lambda_{H\sigma} + \mu_{\sigma}^{2} \left(8\lambda_{\sigma} + 6y^{2} + \text{Tr}[Y^{\dagger}Y] \right) + \frac{1}{(16\pi^{2})^{2}} \left[\mu_{H}^{2} \left[\lambda_{H\sigma} \left(\frac{48g_{1}^{2}}{5} - 48y_{b}^{2} + 48g_{2}^{2} - 48y_{t}^{2} \right) - 32\lambda_{H\sigma}^{2} \right] + \mu_{\sigma}^{2} \left(40g_{3}^{2}y^{2} - 8\lambda_{H\sigma}^{2} - 40\lambda_{\sigma}^{2} - 9y^{4} - 48y^{2}\lambda_{\sigma} \right) + 18g_{1}^{2}q^{2}y^{2}\mu_{\sigma}^{2} \\ & -\mu_{H}^{2}\lambda_{H\sigma}(16\text{Tr}[GG^{\dagger}] + 16\text{Tr}[FF^{\dagger}]) - \mu_{\sigma}^{2} \left(\frac{3\text{ Tr}[YY^{\dagger}YY^{\dagger}]}{2} + 3\text{Tr}[Y^{\dagger}YF^{\dagger}F] \right) \\ & + 8\text{Tr}[Y^{\dagger}Y]\lambda_{\sigma} \bigg) \bigg], \end{split}$$


Higgs and σ bare mass parameters: Threshold at m_Z

$$1000 \text{m}_{N} = \text{v}_{\sigma} = 1\text{e}+09 \text{ GeV}, \ \lambda_{S} = 2\text{e}-10, \ \lambda_{HS} = -3.5\text{e}-06, \ \text{Y}_{F} = 0.001, \ \text{Y}_{Q} = 0.001$$

Higgs and σ bare mass parameters: Threshold at m_{ρ}

$$1000 \text{m}_{N} = \text{v}_{\sigma} = 1\text{e}+09 \text{ GeV}, \ \lambda_{S} = 2\text{e}-10, \ \lambda_{HS} = -4.7\text{e}-06, \ \text{Y}_{F} = 0.001, \ \text{Y}_{Q} = 0.001$$

- SMASH unifies axions, seesaw and extended Higgs sector on one energy scale, $\mu \sim 10^{10} 10^{11}$ GeV, solving several problems badgering the Standard Model in one go.
- 2 SM vacuum is metastable, since λ_H turns negative around $\mu \simeq 10^{12}$ GeV, SMASH can fix this vacuum metastability problem with $\lambda_{H\sigma} \gtrsim -10^{-5}$ at two-loop RGE level.
- Surface Further investigations from cosmology part will fix the $\lambda_{H\sigma}$ value.