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[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],  

[Dzuba, Flambaum, Samsonov, Stadnik, arXiv:1805.01234] 

Atomic EDM experiments: Cs, Tl, Xe, Hg, Ra 

Molecular EDM experiments: YbF, HfF+, ThO 

 P,T-violating forces => Atomic and Molecular EDMs 

Non-Cosmological Sources of Dark Bosons 



Constraints on Scalar-Pseudoscalar 

Electron-Electron Interaction 
EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)] 

Many orders of magnitude improvement!  



Manifestations of Dark Bosons 

 New forces 

 Interconversion with 

ordinary particles 

 Stellar emission 

 Dark matter 



Motivation 
 Traditional “scattering-off-nuclei” searches for heavy 

WIMP dark matter particles (mχ ~ GeV) have not yet 

produced a strong positive result.  

 

 

 

 

 
 

  



Motivation 
 Traditional “scattering-off-nuclei” searches for heavy 

WIMP dark matter particles (mχ ~ GeV) have not yet 

produced a strong positive result.  

 

 

 

 

 
 

  



Motivation 
 Traditional “scattering-off-nuclei” searches for heavy 

WIMP dark matter particles (mχ ~ GeV) have not yet 

produced a strong positive result.  

 

 

 

 

 
 

  



Motivation 
 Traditional “scattering-off-nuclei” searches for heavy 

WIMP dark matter particles (mχ ~ GeV) have not yet 

produced a strong positive result.  

 

 

 

 

 
 

 Challenge: Observable is fourth power in a small                  

interaction constant (e1 >> י)! 
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 Question: Can we instead look for effects of dark matter 

that are first power in the interaction constant? 
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• First-power effects  => Improved sensitivity to certain DM 

interactions by up to 15 orders of magnitude (!) 

 



Low-mass Spin-0 Dark Matter 

Dark Matter 

Scalars 

(Dilatons):  

φ → +φ 
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Victor Flambaum talk 



Low-mass Spin-0 Dark Matter 

Dark Matter 

Pseudoscalars                

(Axions):  

φ → -φ 

→ Time-varying spin-

dependent effects 

P 

QCD axion resolves 

strong CP problem 

1000-fold improvement 



“Axion Wind” Spin-Precession Effect 
[Flambaum, talk at Patras Workshop, 2013], [Graham, Rajendran, PRD 88, 035023 (2013)], 

[Stadnik, Flambaum, PRD 89, 043522 (2014)] 

Pseudo-magnetic field 



Oscillating Electric Dipole Moments 

 Electric Dipole Moment (EDM) = parity (P) and time-

reversal-invariance (T) violating electric moment 

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)] 

Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)] 
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Searching for Spin-Dependent Effects 

 Use spin-polarised sources: Atomic magnetometers,      

ultracold neutrons, torsion pendula 

 Earth’s rotation 

σ E B 

Proposals: [Flambaum, talk at Patras Workshop, 2013; Stadnik, Flambaum,            

PRD 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)] 

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)] 

Beff 
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Dark Matter with Nucleons 
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Constraints on Interaction of Axion          

Dark Matter with Nucleons 
 νn/νHg constraints: [nEDM collaboration, PRX 7, 041034 (2017)] 

2 orders of magnitude improvement (laboratory bounds)! 

 Formic acid NMR constraints: [CASPEr collaboration, Antoine Garcon talk] 



Summary 

• New classes of dark matter effects that are                  

first power in the underlying interaction constant      

=> Up to 15 orders of magnitude improvement 
 

• Improved limits on dark bosons from atomic 

experiments (new forces, independent of ρDM) 
 

• More details in full slides (also on ResearchGate) 


