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Basics of Atomic EDMs

Electric Dipole Moment (EDM) = parity (P) and time-

reversal-invariance (T) violating electric moment
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Non-Cosmological Sources of Dark Bosons

[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],
[Dzuba, Flambaum, Samsonov, Stadnik, arXiv:1805.01234]
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P, T-violating forces => Atomic and Molecular EDMs

Atomic EDM experiments: Cs, Tl, Xe, Hg, Ra
Molecular EDM experiments: YbF, HfF*, ThO



Constraints on Scalar-Pseudoscalar
Electron-Electron Interaction

EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]
Many orders of magnitude improvement!

Atomic and molecular

“10 /" EDM experiments

i

i
I
I

‘\,'\Combined astrophysical

Y

_____ . + laboratory limits 8
-40  Macroscopic—scale .
I experiments
-50 i \ L | | | | | |
- L 5 10



Manifestations of Dark Bosons
fi

L

: ¢

T

New forces

Stellar emission

dark matter halo

bulge
S disk

—————————

Milky Way

B) | | &

Interconversion with
ordinary particles Dark matter




Motivation

Traditional “scattering-off-nuclei” searches for heavy
WIMP dark matter particles (m, ~ GeV) have not yet

produced a strong positive result.
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Challenge: Observable is fourth power in a small

interaction constant (e' << 1)!



Motivation

Traditional “scattering-off-nuclei” searches for heavy
WIMP dark matter particles (m, ~ GeV) have not yet

produced a strong positive result.
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Question: Can we instead look for effects of dark matter

that are first power in the interaction constant?




Low-mass Spin-0 Dark Matter

« Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @, cos(m,c?t/h), with energy density

<p(p> ~ m<p2<p02/2 (pDM,IocaI ~0.4 GeV/Cm3)
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Low-mass Spin-0 Dark Matter

Low-mass spin-0 particles form a coherently oscillating
classical field @(t) = @, cos(m,c?t/h), with energy density
<pgo> ~ m(p2§002/2 (pDM,IocaI ~0.4 GeV/Cms)

1022 eV < m, << 1 eV inaccessible to traditional “scattering-
off-nuclei” searches, since |p,| ~ 10°m,, is extremely small
=> recoil effects of individual particles suppressed

BUT can look for coherent effects of a low-mass DM field in
low-energy atomic and astrophysical phenomena that are
first power in the interaction constant «:

Lo = f{-@’n’XszSM => O Xk

First-power effects => Improved sensitivity to certain DM
interactions by up to 15 orders of magnitude (!)
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Low-mass Spin-0 Dark Matter
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“Axion Wind” Spin-Precession Effect

[Flambaum, talk at Patras Workshop, 2013], [Graham, Rajendran, PRD 88, 035023 (2013)],
[Stadnik, Flambaum, PRD 89, 043522 (2014)]
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Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)]
Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)]

Electric Dipole Moment (EDM) = parity (P) and time-
reversal-invariance (T) violating electric moment
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Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at Patras Workshop, 2013; Stadnik, Flambaum,
PRD 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons, torsion pendula
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Proposals: [Flambaum, talk at Patras Workshop, 2013; Stadnik, Flambaum,
PRD 89, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use spin-polarised sources: Atomic magnetometers,
ultracold neutrons, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]
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Constraints on Interaction of Axion
Dark Matter with Gluons

nEDM constraints: [nEDM collaboration, PRX 7, 041034 (2017)]

3 orders of magnitude improvement!
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Constraints on Interaction of Axion
Dark Matter with Nucleons

V,/Vy4 constraints: [nEDM collaboration, PRX'7, 041034 (2017)]
40-fold improvement (laboratory bounds)!
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Dark Matter with Nucleons

V,/Vy4 constraints: [nEDM collaboration, PRX'7, 041034 (2017)]
40-fold improvement (laboratory bounds)!
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Constraints on Interaction of Axion
Dark Matter with Nucleons

V,/Vy4 constraints: [nEDM collaboration, PRX'7, 041034 (2017)]
Formic acid NMR constraints: [CASPEr collaboration, Antoine Garcon talk]

2 orders of magnitude improvement (laboratory bounds)!

Laboratory searches for new spin—dependent forces

Supernova energy—loss bounds

Formic acid NMR
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Summary

 New classes of dark matter effects that are

first power in the underlying interaction constant

=> Up to 15 orders of magnitude improvement

* Improved limits on dark bosons from atomic

experiments (new forces, independent of pp,)

* More details in full slides (also on ResearchGate)



