Introduction to the RADES project at CAST, an axion detector using microwave filters

Sergio Arguedas Cuendis, on behalf of the RADES group
$14^{\text {th }}$ Axion WIMP conference
June 2018

Motivation

- For axion models with PQ transition happening after inflation, one can set a lower bound to the axion mass of at least $m_{A}^{2}>25 \mu \mathrm{VV}$.
- The RADES group is designing and constructing a haloscope type experiment to have competitive sensitivity to axion masses in the 10 - $100 \mu \mathrm{eV}$ decade.

Measurement principle

- In the presence of a magnetic field, the conversion of axions into photons is triggered.
- A cavity resonating at the frequency of the expected axion mass will increase its output power.
- A figure of merit for our experiment is given by:

microwave photon

external B field

$$
F \sim g_{A \alpha}^{4} m_{A}^{2} B^{4} V^{2} T_{S y S}^{-2} G^{4} Q
$$

The RADES cavity

- Increasing mass means shorter cavities and smaller volume.
- Therefore, RADES designed and built an array of 5 cavities connected through irises resonating at the same frequency.
- For the first prototype a fix frequency was chosen and the G factor was maximized.

Cavity modes

Mode 1

Mode 4

RADES at CAST

RADES at CAST

Measurements of the cavity property

Sensitivity projection

\rightarrow QCD Axion relation: $g_{a \gamma} \equiv 2 \times 10^{-16} C_{a \gamma} \frac{m_{a}}{\mu e V} \mathrm{GeV}^{-1}$ KSVZ and yellow band: Axion models

Conclusions

- RADES designed and built its first cavity resonating at $\sim 8.4 \mathrm{GHz}$
- The cavity was successfully installed at the CAST magnet
- For more information please visit my poster

