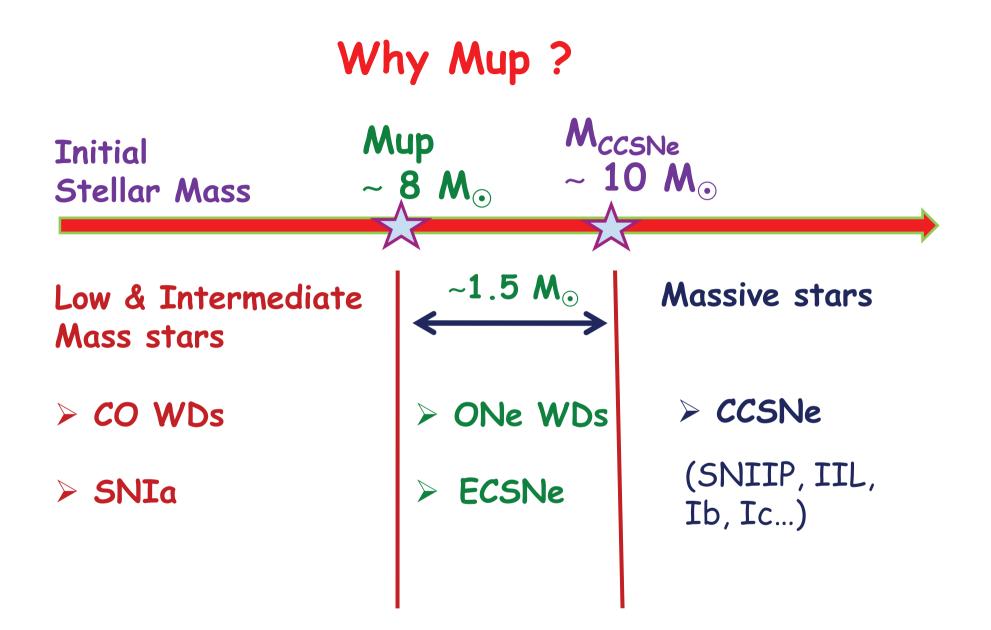
Axion effect on the minimum stellar mass that experiences central carbon burning, Mup



Maurizio Giannotti, Barry Univ., FL, USA Alessandro Mirizzi, Bari Univ. & INFN-Bari, Italy Oscar Straniero, INAF-OAA & INFN-LNGS, Italy

14th PATRAS workshop on Axions, WIMPs & WISPs DESY, Hamburg, June 18-22, 2018

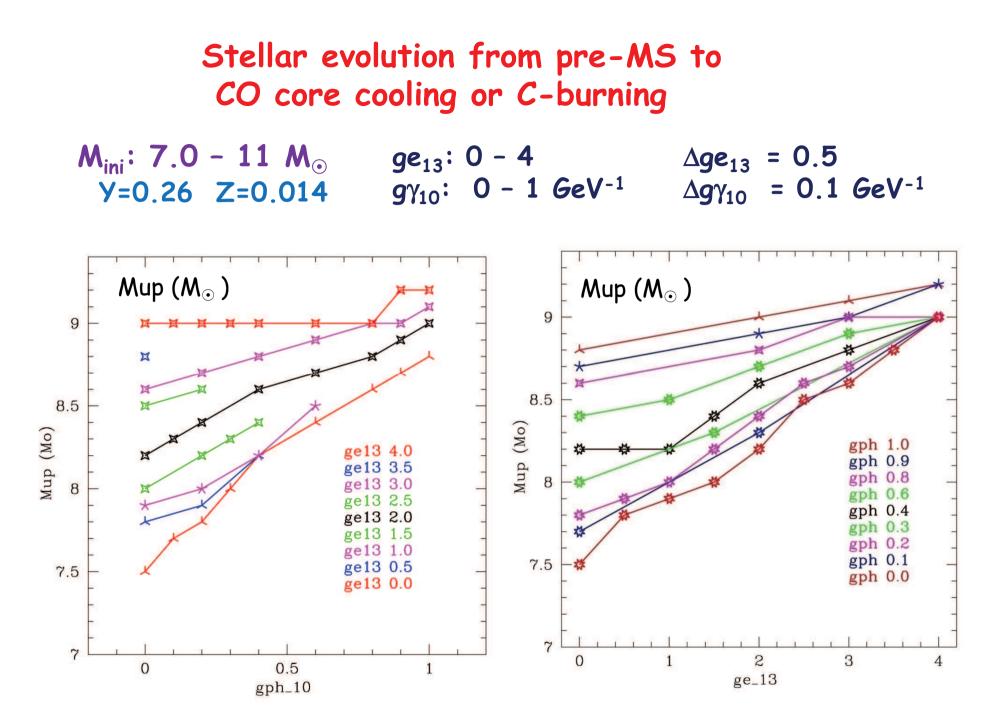
Why axions ?

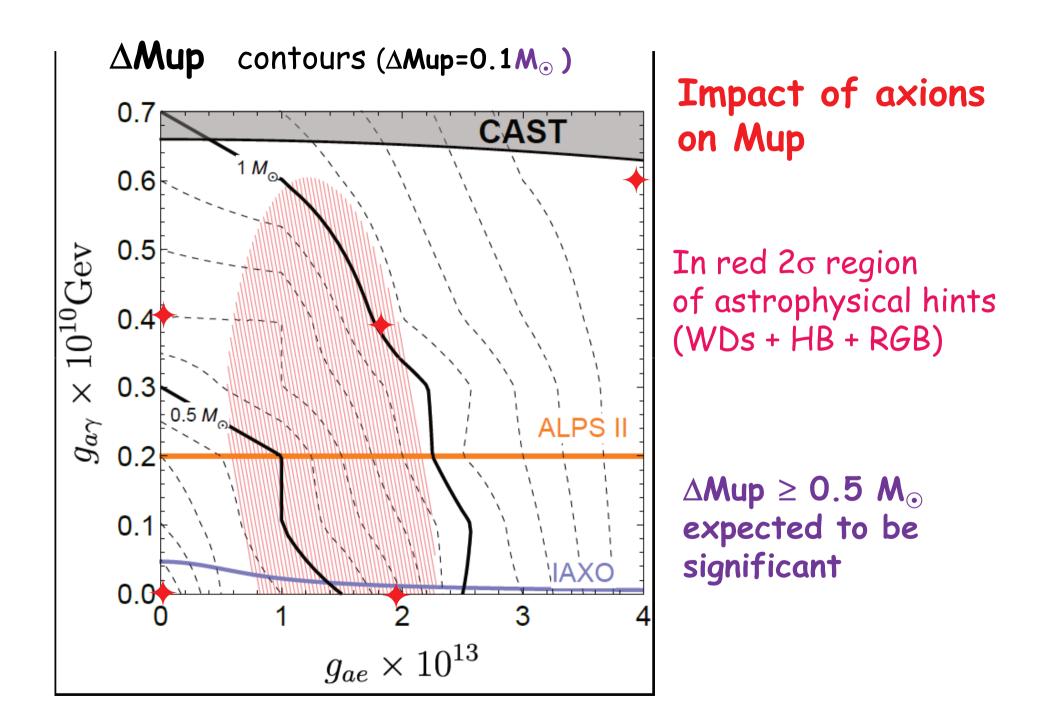
- Axions are:
 - (1) predicted (BSM) to solve the strong CP problem
 (2) dark matter candidates (in general, ALP-Axion Like Particles)
- Stars are good Laboratories for particle physics: Axions may be produce at stellar temperatures carrying energy out
- Astrophysical observational evidences of extra-energy sink in stars... by axions/ALPs (?)
- Next generation of ALP experimental searches, ALPSII & IAXO, will look in the range relevant for astrophysical constraints

Axions processes & rates

DFSZ (Dine-Fischler-Srednicki-Zhitnitsk) axion model (GUT) → axions couple to photons & fermions

Electrons: Compton Bremsstrahlung


Our approach


• Assume that axions (DFSZ) exist, with values of the coupling constants to photons and electrons close to current upper limits/hints :

$g_{a\gamma} \leq 0.66 10^{-10} GeV^{-1}$	$g_{ae} \leq 4.3 \ 10^{-13}$
$g\gamma_{10} \leq 0.66 \ GeV^{-1}$	$ge_{13} \leq 4.3$
Ayala+ 2014, Straniero+ 2016	Isern+ 2018, 2008, Miller Bertolami+2014,
CAST collaboration 2017	Viaux+2013

 Stellar evolution with Primakoff, Compton & Bremsstrahlung axion processes →
 FUNS stellar evolution code Straniero+ 06, Cristallo+09,11
 Axion rates from Nakawaga+ 1987, 1988; Raffelt & Dearborn 1987, Raffelt & Weiss, 1995, Raffelt 1996 Updated by us !!

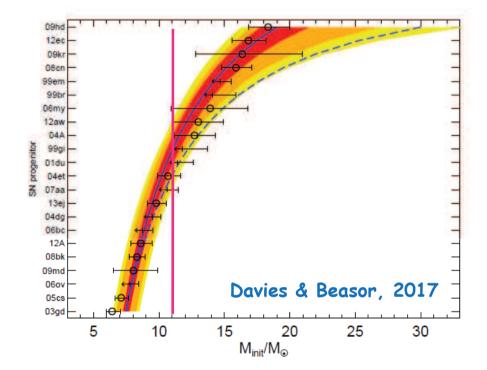
• Explore axion impact on Mup (the minimum mass that experiences carbon burning)

Why axions increase Mup?

> 2nd Dup is anticipated (due to faster evolution) → stop the growth of the CO core mass for a given M_{ini}

ge ₁₃	g γ ₁₀ GeV ⁻¹	Mup (M $_{\odot}$)	M_{WD} (M_{\odot})	Age (Myr)
0.0	0.0	7.5	1.05	39.5
2.0	0.0	8.2	1.08	34.3
0.0	0.4	8.2	1.09	32.5
2.0	0.4	8.6 (+1.1)	1.11 (+0.06)	29.5 (-25%)
4.0	0.6	9.0 (+1.5)	1.12 (+0.07)	25.6 (-35%)

> The mass of the CO core needed to reach C-ignition conditions increases (due to CO core cooling):

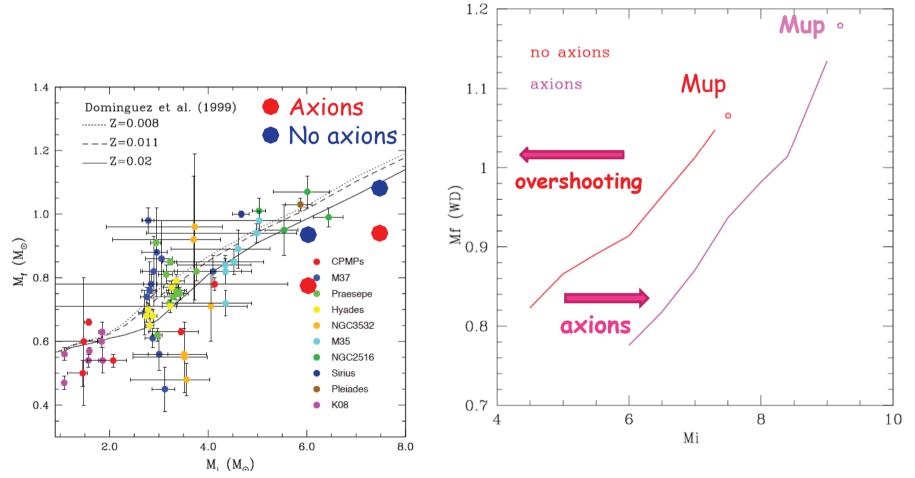

ge ₁₃	g γ ₁₀ GeV ⁻¹	M_{CO} (M_{\odot})
0.0	0.0	1.07
0.0	0.4	1.10 (+0.03)
2.0	0.4	1.13 (+0.06)
4.0	0.6	1.15 (+0.08)

Observational constraints related to Mup

- > Minimum progenitor mass of CCSNe
- High mass end of the Initial-Final Mass Relation (i.e. maximum mass of an isolated CO WD)
- > CCSN rates/SNIa rates $\land \land Mup \sim 1.0 1.5 M_{\odot}$ (ECSN, NS, BH)
- DTD (Delayed Time Distribution) SNe Ia young population observed < 180Myr (< 30Myr) Aubourg+ 2008, Brandt + 2010

CO WD of \leftarrow No axions $\sim 4.0 \ M_{\odot} \sim 194.8 \ Myr$ $0.8 \ M_{\odot}$ $\leftarrow ge_{13}4 \ g\gamma_{10} \ 1GeV^{-1} \sim 6.0 \ M_{\odot}$ $\sim 63.8 \ Myr$

> Minimum mass of CCSNe (SNIIP) progenitors



Observations: **7**.5^{+0.3}_{-0.2} M_☉ Smartt, 2015, Davies & Beasor, 2018

Models > 9-10 M_☉ Doherty+ 2015, Heger+ 2003, Poelarends+ 2008

Not much room, if any, to increase Mup \rightarrow So, not much room for axions with $ge_{13} > 2.5$ & $g\gamma_{10} > 0.6$ GeV⁻¹ if $\Delta Mup \ge 1.0$ M_{\odot} is excluded

High mass end of the semi-empirical Initial-Final Mass Relation (IFMR)

Courtesy of Jordi Isern (Catalán, Isern, García-Berro & Ribas, 2008)

Summary

Axions may increase Mup: 7.5 \rightarrow 8.6 M_{\odot} (9.2) M_{\odot} for current constraints (DFSZ) on g_{ae} & $g_{a\gamma}$ also CO core mass needed for C-ignition M_{cO} : 1.09 \rightarrow 1.13 (1.16) M_{\odot}

So, influence:

- \rightarrow High mass end of the IFMR \rightarrow
 - CO WD maximum mass \uparrow : 1.11 (1.14) M_{\odot}
 - SNIa rates + (more stars end as CO WDs)
 - Younger SNIa progenitors (~Age/3)
 - CCSN rates 🕇

→ Mup & minimum progenitor mass of CCSNe ↑ Not leaving much room (if any) for axions with with $ge_{13} > 2.5$ & $g\gamma_{10} > 0.6$ GeV⁻¹ Main theoretical uncertainties: treatment of convection & ${}^{12}C+{}^{12}C$ rate