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The standard model of cosmology:  
ΛCDM + vanilla inflation

• Λ: 
– no time dependence
– no couplings to DM or baryons
– gravity = GR

• CDM: 
– nonrelativistic; no non-gravitational interactions
– nearly self-similar hierarchy of bound structures (halos) with dn/dM ~ M-1.9 at small masses
– halo substructure down to free-streaming scale with dN/dm ~ m-1.8

– without baryons: near-universal density profiles („NFW“) with central 1/r-cusps

• slow-roll, single field inflation:
– nearly scale-invariant perturbation spectrum on scales relevant for structure formation
– negligible isocurvature perturbations
– negligible primordial non-Gaussianties

• physics beyond CDM (bCDM):
– differences most pronounced on small, nonlinear scales
– challenges for both observations and theory



Small-scale structure and ΛCDM:
Is it a bug or a feature?

Please consult these reviews for details and references to original work…

•Weinberg et al. 2015, PNAS, arXiv:1306.0913

• Bullock & Boylan-Kolchin 2017, ARAA, arXiv:1707.04256

• Buckley & Peter 2018, arXiv:1712.06615

…and of course Carlos Frenk’s talk this afternoon.
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FIG. 9. Summary of the halo mass Mhalo where hints of deviations from ⇤CDM have been claimed, as well

as the range of Mhalo where baryons are expected to influence the structure of halos. “TBTF” is “Too big

to fail” and “BTF” is the baryonic Tully-Fisher relation.

the assumption that the NFW profile is a reasonable description outside that radius [266, 321],

which may not be the case. If the halos are cored rather than cusped, we break the neat relation

between the measured rotation curve and the virial mass, and in fact a low-amplitude rotation

curve can be mapped to a halo mass that is substantially higher than inferred if one assumes

that the halos have NFW density profiles (Figure 7). Thus, the mismatch between the predicted

and observed velocity functions, or the TF-derived SMHM relation and the abundance-matching

prediction, may be hints of a cusp/core problem instead. As we will see below, the interpretation

of the problem, additional systematic uncertainties, and the necessity of either new baryonic or

dark-matter-physics solutions are hotly debated [326–331].

Interpreted in the context of our astrophysical parameter Mhalo, solutions to the BTF problem

in the form of new dark matter physics are needed for the Mhalo ⇠ 109M� � 1011M� mass range.

Are all these problems aspects of one central problem?

We described the four most commonly cited problems with CDM on small scales, summarized

in Figure 9. However, we argue here that these problems are di↵erent views of one central problem,

which is that the relationship between the mass of galaxies and that of their dark matter halos is

uncertain on small scales.

Why is this the central problem, and how will a reduced uncertainty help illuminate dark matter

microphysics? Let us consider first the missing satellites problem, the TBTF problem, and the

BTF relation. The existence of these problems as they are stated depends on an accurate mapping

from the observed kinematics of baryons to a halo mass. If we assume that the currently proposed
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Missing satellites

• N-body simulations show structure on all scales down to resolution 
limit 

• Only ~ 50 observed satellites with M★ > 300 M⊙ within 300 kpc of MW 
vs. ~ 1000 predicted DM subhalos > 107 M⊙  (Moore+ ’99, Klypin+ ’99)

Figure 7

The Missing Satellites Problem: Predicted ⇤CDM substructure (left) vs. known Milky Way
satellites (right). The image on the left shows the ⇤CDM dark matter distribution within a sphere
of radius 250 kpc around the center of a Milky-Way size dark matter halo (simulation by V.
Robles and T. Kelley in collaboration with the authors). The image on the right (by M. Pawlowski
in collaboration with the authors) shows the current census of Milky Way satellite galaxies, with
galaxies discovered since 2015 in red. The Galactic disk is represented by a circle of radius 15 kpc
at the center and the outer sphere has a radius of 250 kpc. The 11 brightest (classical) Milky Way
satellites are labeled by name. Sizes of the symbols are not to scale but are rather proportional to
the log of each satellite galaxy’s stellar mass. Currently, there are ⇠ 50 satellite galaxies of the
Milky Way compared to thousands of predicted subhalos with Mpeak & 107 M�.

see, e.g., Rees & Ostriker 1977). According to Figure 6, these physical e↵ects are likely to

become dominant in the regime of ultra-faint galaxies M? . 105M�.

The question then becomes: can we simply adopt the abundance-matching relation

derived from field galaxies to “solve” the Missing Satellites Problem down to the scale of

the classical MW satellites (i.e., Mvir ' 1010M� $ M? ' 106M�)? Figure 8 (modified from

Garrison-Kimmel et al. 2017a) shows that the answer is likely “yes.” Shown in magenta is

the cumulative count of Milky Way satellite galaxies within 300 kpc of the Galaxy plotted

down to the stellar mass completeness limit within that volume. The shaded band shows the

68% range predicted stellar mass functions from the dark-matter-only ELVIS simulations

(Garrison-Kimmel et al. 2014) combined with the AM relation shown in Figure 6 with zero

scatter. The agreement is not perfect, but there is no over-prediction. The dashed lines show

how the predicted satellite stellar mass functions would change for di↵erent assumed (field

galaxy) faint-end slopes in the calculating the AM relation. An important avenue going

forward will be to push these comparisons down to the ultra-faint regime, where strong

baryonic feedback e↵ects are expected to begin shutting down galaxy formation altogether.

2.2. Cusp, Cores, and Excess Mass

As discussed in Section 1, ⇤CDM simulations that include only dark matter predict that

dark matter halos should have density profiles that rise steeply at small radius ⇢(r) / r
�� ,

with � ' 0.8� 1.4 over the radii of interest for small galaxies (Navarro et al. 2010). This is
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Baryons: galaxy formation 
(in)efficiency

• Observed stellar mass functions are much flatter at low masses than DM halo mass functions 
(~ -1.5 vs. -1.9)

• Galaxy formation efficiency varies nonlinearly with halo mass, differences grow at both large 
and small masses (consistent with photoionization from UV background and stellar feedback)

• Abundance matching and simulations suggest that the number of classical satellites in the 
Milky Way is consistent with ΛCDM ⇒ missing satellite problem solved?

Figure 8

“Solving” the Missing Satellites Problem with abundance matching. The cumulative count of
dwarf galaxies around the Milky Way (magenta) plotted down to completeness limits from
Garrison-Kimmel et al. (2017a). The gray shaded region shows the predicted stellar mass function
from the dark-matter-only ELVIS simulations (Garrison-Kimmel et al. 2014) combined with the
fiducial AM relation shown in Figure 6, assuming zero scatter. If the faint end slope of the stellar
mass function is shallower (dashed) or steeper (dotted), the predicted abundance of satellites with
M? > 104 M� throughout the Milky Way’s virial volume di↵ers by a factor of 10. Local Group
counts can therefore serve as strong constraints on galaxy formation models.

in contrast to many (though not all) low-mass dark-matter-dominated galaxies with well-

measured rotation curves, which prefer fits with constant-density cores (� ⇡ 0 � 0.5; e.g.,

McGaugh, Rubin & de Blok 2001; Marchesini et al. 2002; Simon et al. 2005; de Blok et al.

2008; Kuzio de Naray, McGaugh & de Blok 2008). A related issue is that fiducial ⇤CDM

simulations predict more dark matter in the central regions of galaxies than is measured

for the galaxies that they should host according to AM. This “central density problem” is

an issue of normalization and exists independent of the precise slope of the central density

profile (Alam, Bullock & Weinberg 2002; Oman et al. 2015). While these problems are

in principle distinct issues, as the second refers to a tension in total cumulative mass and

the first is an issue with the derivative, it is likely that they point to a common tension.

Dark-matter-only ⇤CDM halos are too dense and too cuspy in their centers compared to

many observed galaxies.

Figure 9 summarizes the basic problem. Shown as a dashed line is the typical circular

velocity curve predicted for an NFW ⇤CDM dark matter halo with Vmax ⇡ 40km s�1

compared to the observed rotation curves for two galaxies with the same asymptotic velocity

from Oh et al. (2015). The observed rotation curves rise much more slowly than the ⇤CDM

expectation, reflecting core densities that are lower and more core-like than the fiducial
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The thick black line shows the global dark matter mass function. The dotted line is shifted to the
left by the cosmic baryon fraction for each halo Mvir ! fbMvir. This is compared to the observed
stellar mass function of galaxies from Bernardi et al. (2013, magenta stars) and Wright et al.
(2017; cyan squares). The shaded bands demonstrate a range of faint-end slopes ↵g = �1.62 to
�1.32. This range of power laws will produce dramatic di↵erences at the scales of the classical
Milky Way satellites (M? ' 105�7M�). Pushing large sky surveys down below 106M� in stellar
mass, where the di↵erences between the power law range shown would exceed a factor of ten,
would provide a powerful constraint on our understanding of the low-mass behavior. Until then,
this mass regime can only be explored with without large completeness corrections in vicinity of
the Milky Way.

observed stellar mass function of galaxies. The di↵erence grows dramatically at both large

and small masses, with a maximum e�ciency of ✏? ' 0.2 at the stellar mass scale of the

Milky Way (M? ⇡ 1010.75M�). This basic mismatch in shape has been understood since

the earliest galaxy formation models set within the dark matter paradigm (White & Rees

1978) and is generally recognized as one of the primary constraints on feedback-regulated

galaxy formation (White & Frenk 1991; Benson et al. 2003; Somerville & Davé 2015).

At the small masses that most concern this review, dark matter halo counts follow

dn/dM / M
↵ with a steep slope ↵dm ' �1.9 compared to the observed stellar mass

function slope of ↵g = �1.47 (Baldry et al. 2012, which is consistent with the updated

GAMA results shown in Figure 5). Current surveys that cover enough sky to provide a

global field stellar mass function reach a completeness limit of M? ⇡ 107.5M�. At this

mass, galaxy counts are more than two orders of magnitude below the naive baryonic

mass function fbMvir. The shaded band illustrates how the stellar mass function would

extrapolate to the faint regime spanning a range of faint-end slopes ↵ that are marginally

consistent with observations at the completeness limit.

One clear implication of this comparison is that galaxy formation e�ciency (✏?) must

vary in a non-linear way as a function of Mvir (at least if ⇤CDM is the correct underlying

model). Perhaps the cleanest way to illustrate this is adopt the simple assumption of

Abundance Matching (AM): that galaxies and dark matter halos are related in a one-to-
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Low-density cores vs. high-density cusps

• Rotation curves show that galaxy centers are less dense and less 
cuspy than predicted by N-body simulations (~ few % of virial radius)

• In principle two distinct problems, but possibly single underlying 
cause

Figure 9

The Cusp-Core problem. The dashed line shows the naive ⇤CDM expectation (NFW, from
dark-matter-only simulations) for a typical rotation curve of a Vmax ⇡ 40 km s�1 galaxy. This
rotation curve rises quickly, reflecting a central density profile that rises as a cusp with ⇢ / 1/r.
The data points show the rotation curves of two example galaxies of this size from the LITTLE
THINGS survey (Oh et al. 2015)), which are more slowly rising and better fit by a density profile
with a constant density core (Burkert 1995, cyan line).

prediction.

2.3. Too-Big-To-Fail

As discussed above, a straightforward and natural solution to the missing satellites problem

within ⇤CDM is to assign the known Milky Way satellites to the largest dark matter

subhalos (where largest is in terms of either present-day mass or peak mass) and attribute

the lack of observed galaxies in in the remaining smaller subhalos to galaxy formation

physics. As pointed out by Boylan-Kolchin, Bullock & Kaplinghat (2011), this solution

makes a testable prediction: the inferred central masses of Milky Way satellites should be

consistent with the central masses of the most massive subhalos in ⇤CDM simulations of

Milky Way-mass halos. Their comparison of observed central masses to ⇤CDM predictions

from the Aquarius (Springel et al. 2008) and Via Lactea II (Diemand et al. 2008) simulations

revealed that the most massive ⇤CDM subhalos were systematically too centrally dense to

host the bright Milky Way satellites (Boylan-Kolchin, Bullock & Kaplinghat 2011, 2012).

22 Bullock • Boylan-Kolchin
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FIG. 5. Density profiles of 1010 M� halos (left) and the resulting integrated mass profile plotted as vc

(right), comparing “cored” and “cusped” density profiles, out to the virial radius (55 kpc). Any density

profile with ⇢ / r
�↵ toward the center with ↵ & 1 is considered a “cusped” profile. The case of ↵ = 1

is specific to the NFW profile [220]. By “cored”, people either mean the specific case of ↵ = 0, or more

generally ↵ < 1. Here, we compare a cusped NFW profile to a cored profile (in the strict, ↵ = 0 sense):

a Burkert profile with a scale radius of 0.7rs, which is a good fit to both dwarf rotation curves and SIDM

halos [146, 221]. The mass profiles are often plotted as the circular velocity vc, which is the orbit a particle

on a circular orbit in a spherical potential would have. The maximum value of vc is called vmax. The largest

value of vmax a halo ever achieves in its history (typically either z = 0 for isolated halos, or just before a

satellite halo falls into a larger system) is called vpeak (Section III B 1).

4. The baryonic Tully-Fisher relation (Figure 8) and “too big to fail in the field” (Figure 6).

We will end the section with a summary on the state of simulations that include galaxy evolution

physics, and show that it is not currently possible to unambiguously determine whether these hints

are evidence of new physics or the result of the gravitational interplay between dark matter and

baryons. We summarize our main conclusions about these hints of possible deviations from CDM

in Figure 9. A key insight in this section is that the major uncertainty behind the lack of resolution

to these problems is the not-well-quantified relationship between galaxy mass and halo mass on

dwarf-galaxy scales. In Section V, we describe a path forward to break through present-day barriers

to progress, summarized in Figure 10. We recommend that readers less familiar with galaxies and

halos consult Section III B 1 before continuing.

Buckley & Peter ’18



„Too big to fail“

• Most massive CDM subhalos are too dense to host 
the bright MW satellites

• These subhalos should form stars if less massive 
ones do ⇒ TBTF (Boylan-Kolchin+ ’11)

• Numbers of massive subhalos match, but central 
densities are ~50 % lower than predicted from CDM 
⇒  TBTF may be a variant of the cusp-core problem 
(excess central mass)

NFW halo overpredicts the rotation speed in the inner few
kiloparsecs (kpc), by a factor of 2 or more.
Early theoretical discussions of the cusp-core problem devoted

considerable attention to the predicted central slope of the
density profiles and to the effects of finite numerical resolution
and cosmological parameter choices on the simulation pre-
dictions [a recent state-of-the-art discussion is provided by
Ludlow et al. (14)]. However, the details of the inner profile
shape are not essential to the conflict; the basic problem is that
CDM predicts too much dark matter in the central few kpc of
typical galaxies, and the tension is evident at scales where vcðrÞ
has risen to ∼ 1=2 of its asymptotic value (e.g., refs. 15, 16). On
the observational side, the most severe discrepancies between

predicted and observed rotation curves arise for fairly small
galaxies, and early discussions focused on whether beam
smearing or noncircular motions could artificially suppress the
measured vcðrÞ at small radii. However, despite uncertainties in
individual cases, improvements in the observations, sample sizes,
and modeling have led to a clear overall picture: A majority of
galaxy rotation curves are better fit with cored dark matter
profiles than with NFW-like dark matter profiles, and some well-
observed galaxies cannot be fit with NFW-like profiles, even
when one allows halo concentrations at the low end of the the-
oretically predicted distribution and accounts for uncertainties in
modeling the baryon component (e.g., ref. 13). Resolving the
cusp-core problem therefore requires modifying the halo profiles

baryons

Cusp + baryons

Core + baryons

Fig. 1. Cusp-core problem. (Left) Optical image of the galaxy F568-3 (Inset, from the Sloan Digital Sky Survey) is superposed on the dark matter distribution
from the “Via Lactea” cosmological simulation of a Milky Way-mass CDM halo (12). In the simulation image, intensity encodes the square of the dark matter
density, which is proportional to the annihilation rate and highlights the low-mass substructure. (Right) Measured rotation curve of F568-3 (points) compared
with model fits assuming a cored dark matter halo (blue solid curve) or a cuspy dark matter halo with a Navarro–Frenk–White (NFW; 8) profile (red dashed
curve, concentration c= 9:2, V200 = 110  km · s−1). The dotted green curve shows the contribution of baryons (stars + gas) to the rotation curve, which is in-
cluded in both model fits. An NFW halo profile overpredicts the rotation speed in the inner few kpc. Note that the rotation curve is measured over roughly the
scale of the 40-kiloparsec (kpc) image (Inset, Left).

Fig. 2. Missing satellite and too big to fail problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M⊙ CDM halo (18). As in
Fig. 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark the nine most massive subhalos. (Right) Spatial
distribution of the classical satellites of the Milky Way. The central densities of the subhalos (Left) are too high to host the dwarf satellites (Right), predicting
stellar velocity dispersions higher than observed. (Right) Diameter of the outer sphere is 300 kpc; relative to the simulation prediction (and to the Andromeda
galaxy), the Milky Way’s satellite system is unusually centrally concentrated (19).

12250 | www.pnas.org/cgi/doi/10.1073/pnas.1308716112 Weinberg et al.

Figure 10

The Too-Big-to-Fail Problem. Left: Data points show the circular velocities of classical Milky
Way satellite galaxies with M? ' 105�7M� measured at their half-light radii r1/2. The magenta
lines show the circular velocity curves of subhalos from one of the (dark matter only) Aquarius
simulations. These are specifically the subhalos of a Milky Way-size host that have peak
maximum circular velocities Vmax > 30 km s�1 at some point in their histories. Halos that are this
massive are likely resistant to strong star formation suppression by reionization and thus naively
too big to have failed to form stars (modified from Boylan-Kolchin, Bullock & Kaplinghat 2012).
The existence of a large population of such satellites with greater central masses than any of the
Milky Way’s dwarf spheroidals is the original Too-Big-to-Fail problem. Right: The same problem
– a mismatch between central masses of simulated dark matter systems and observed galaxies –
persists for field dwarfs (magenta points), indicating it is not a satellite-specific process (modified
from Papastergis & Ponomareva 2017). The field galaxies shown all have stellar masses in the
range 5.75  log10(M?/M�)  7.5. The gray curves are predictions for ⇤CDM halos from the
fully self-consistent hydrodynamic simulations of Fitts et al. (2016) that span the same stellar
mass range in the simulations as the observed galaxies.

While there are subhalos with central masses comparable to the Milky Way satellites, these

subhalos were never among the ⇠ 10 most massive (Figure 10). Why would galaxies fail

to form in the most massive subhalos, yet form in dark matter satellites of lower mass?

The most massive satellites should be “too big to fail” at forming galaxies if the lower-mass

satellites are capable of doing so (thus the origin of the name of this problem). In short,

while the number of massive subhalos in dark-matter-only simulations matches the number

of classical dwarfs observed (see Figure 8), the central densities of these simulated dwarfs

are higher than the central densities observed in the real galaxies (see Figure 10).

While too-big-to-fail was originally identified for satellites of the Milky Way, it was

subsequently found to exist in Andromeda (Tollerud, Boylan-Kolchin & Bullock 2014) and

field galaxies in the Local Group (those outside the virial radius of the Milky Way and

M31; Kirby et al. 2014). Similar discrepancies were also pointed out for more isolated low-

mass galaxies, first based on HI rotation curve data (Ferrero et al. 2012) and subsequently

using velocity width measurements (Papastergis et al. 2015; Papastergis & Shankar 2016).

This version of too-big-to-fail in the field is also manifested in the velocity function of

field galaxies4 (Zavala et al. 2009; Klypin et al. 2015; Trujillo-Gomez et al. 2016; Schneider

4We note that the mismatch between the observed and predicted velocity function can also be
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FIG. 7. Illustration of the TBTF problem. We show enclosed mass curves for dark matter halos, quantified

in terms of vc(r); and the Milky Way classical satellite dark masses represented as v1/2 vs. r1/2 (v1/2 values

taken from Ref. [247] and represented with blue points). Black curves show predictions for unstripped CDM

halos with NFW profiles following the mean mass-concentration relation for subhalos [295, 296]. The dashed

magenta lines show the vc(r) curves of halos with identical mass and NFW scale radius as the CDM halos,

but where all halos are able to form 1 kpc cores. The grey shaded region shows the likely vc(r) curves for

the Milky Way classical satellites according to the SMHM relation of Moster et al. [139] (Figure 8), and

the magenta shaded region is vc(r) assuming cored profiles. The TBTF problem is essentially that the grey

shaded region does not overlap with the observed vc values of the classical dwarfs; however, the cored halos

fit well. We do not include tidal stripping in our estimates, although the Milky Way classical dwarfs are

satellites prone to tidal stripping by our galaxy; dark-matter-only simulations show that this is insu�cient

to reduce the CDM halo central densities of the most massive subhalos to match the observed dark masses.

measured and related in simulations and in observations than a relation between �LOS and vmax

[186, 235, 297–300]. A mismatch similar to the formulation of the missing satellites problem in

terms of vmax persists, with CDM predicting many more dense subhalos than the observed number

of dense satellites. This formulation of the missing satellites problem was the direct progenitor

of the “Too Big to Fail” (TBTF) problem [301, 302]. Specifically, TBTF was the observation

that the largest subhalos in CDM dark-matter-only simulations had circular velocities larger than

those measured in the large Milky Way classical dwarfs (see Figure 7). That is, the most massive

subhalos in simulations, which should be “too big to fail” to produce stars and therefore should

correspond to visible satellites, did not seem to be present in observations.

The TBTF problem is a statement about the central densities of the classical dwarf satellites of

Weinberg+ ’15
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6 A. Pontzen and F. Governato

Figure 4. Using the spherically averaged potential from the simulations,
we model the expansion of orbits of test particles at different initial radii
(solid lines). Orbits starting significantly within the inner kiloparsec migrate
outwards over several gigayears, whereas those starting outside a kiloparsec
do not feel the rapid potential variations and so remain near their initial
radius. Our model thus explains the flattening of central density cusps into
kiloparsec-scale cores in small galaxies through radial outwards migration.
As expected the reversible, adiabatic model (illustrated for the innermost
orbit by the dashed line) does not correctly model the heating effect of very
rapid potential variations in the inner parts of the halo.

unaffected. In the LT run, by contrast, no tracer particles gain en-
ergy; those that start on circular orbits, for instance, are predicted
to remain at the same radius for the entire run.

Figure 2 implies that the central baryonic potential returns to
its approximate original shape at the end of each starburst cycle,
because the gas affected by the supernovae has cooled back into
the disk (or has flowed out, replaced by fresh gas). In the adiabatic
limit, where all potential changes occur slowly, the final orbital
parameters should return to their initial values. Indeed by making
DVeff infinitesimal and integrating (12) one obtains

Z p
E(t)�Veff(r; j, t)dr = constant, (14)

where again the integral is taken over the real region of the inte-
grand. This is the generalization of equation (4), and is exactly the
adiabatic invariant derived through the action-angle approach (e.g.
Binney & Tremaine 1987). It implies that Efinal = Einitial if the po-
tential returns to its initial form via a series of slow changes.

Demanding the adiabatic invariant (14) is constant yields the
orbital migration in the ‘gradual outflows’ scenario. The dashed
line in Figure 4 shows that the result derived in this limit is as ex-
pected: although temporary changes in the orbital radius do occur,
they do not persist over time. This underlines the difference be-
tween our new model (where a tracer particle picks up energy from
baryons) and the older adiabatic calculations (where the energy of
a tracer particle is conserved).

Although Figure 4 shows that orbits gain energy, it cannot be
used directly to infer the final inner profile of the dark matter. To
draw conclusions about the evolution of the slope, we evolved the
energy of ⇠ 90000 orbits corresponding to all dark matter particles
in the halo at z = 4. At each timestep, the full radial probability

Figure 5. The spherically averaged dark matter density as a function of ra-
dius, measured at z = 2 when the core has formed in the HT simulations
(thick dotted line). The solid line shows the density profile at this time
according to our model (see text for details); this is seen to be in excel-
lent agreement with the HT simulation. The adiabatic model (dashed line)
fails to correctly model the cusp flattening, demonstrating the need for the
improved modelling presented here. The LT comparison simulation (dash-
dotted line) also remains cusped as explained in Section 2.

distribution for each particle,

p(r;E, j) µ 1p
E �Veff(r; j)

, (15)

was calculated numerically. The sum of the normalized probability
distributions for all particles then implies a density profile accord-
ing to

rmodel(r) µ 1
r2 Â

i
p(r;Ei, ji), (16)

where the sum is over all tracer particles. Time evolution of
rmodel(r) arises from updating Vsphere and each Ei at every timestep
according to equation (12); or, for comparison, by solving equa-
tion (14) to derive the behaviour in the adiabatic limit.

Starting at z = 4, the distribution function is evolved in this
way to z = 2; the resulting density profiles are illustrated in Fig-
ure 5. The thick solid line shows our main model [i.e. it is derived
from equation (12)], and is seen to be in excellent agreement with
the output of the simulation (dotted line). The dotted line shows
the results of modelling the baryonic effects using the adiabatic ap-
proximation [i.e. equation (14)]; the cusp remains, contrary to the
results of the simulation. This reaffirms that the adiabatic approxi-
mation does not capture important aspects of the impact of baryons
on the dark matter. Finally, the dash-dotted line shows the profile
from the LT (low star formation threshold) simulation which, as ex-
plained in Section 2, retains its cusp and is therefore in approximate
agreement with the adiabatically evolved case.

The calculation described by equation (12) involves calculat-
ing the particle distribution function for every intermediate step. It
is possible, therefore, to monitor the rate at which the cusp flat-
tens and compare it against the simulations. Figure 6 shows the
time evolution of the measured logarithmic slope at 500pc for both
the model density profile, equation (16), and the simulated density

c� 0000 RAS, MNRAS 000, 000–000

Baryons: cores from 
gravitational relaxation

• Even low-level star formation over extended period can produce cores by gravitational fluctuations (Navarro+ ’96)

• Star-formation driven core formation most efficient for bright dwarfs, becomes inefficient for classical dwarfs 
(near TBTF scales; explains ~ half of the problem)

• Additional feedback from tidal interactions with MW ⇒ only for MW satellites, field galaxies should differ 
(feedback from cosmic web?)

Figure 13

The impact of baryonic feedback on the inner profiles of dark matter halos. Plotted is the inner
dark matter density slope ↵ at r = 0.015Rvir as a function of M?/Mvir for simulated galaxies at z
= 0. Larger values of ↵ ⇡ 0 imply core profiles, while lower values of ↵ . 0.8 imply cusps. The
shaded gray band shows the expected range of dark matter profile slopes for NFW profiles as
derived from dark-matter-only simulations (including concentration scatter). The filled magenta
stars and shaded purple band (to guide the eye) show the predicted inner density slopes from the
NIHAO cosmological hydrodynamic simulations by Tollet et al. (2016). The cyan stars are a
similar prediction from an entirely di↵erent suite of simulations from the FIRE-2 simulations
(Fitts et al. 2016; Hopkins et al. 2017, Chan et al., in preparation). Note that at dark matter core
formation peaks in e�ciency at M?/Mvir ⇡ 0.005, in the regime of the brightest dwarfs. Both
simulations find that for M?/Mvir . 10�4, the impact of baryonic feedback is negligible. This
critical ratio below which core formation via stellar feedback is di�cult corresponds to the regime
of classical dwarfs and ultra-faint dwarfs.

the mass in stars formed (Governato et al. 2012; Di Cintio et al. 2014). If galaxies form

enough stars, there will be enough supernovae energy to redistribute dark matter and create

significant cores. If too many baryons end up in stars, however, the excess central mass

can compensate and drag dark matter back in. At the other extreme, if too few stars are

formed, there will not be enough energy in supernovae to alter halo density structure and

the resultant dark matter distribution will resemble dark-matter-only simulations. While

the possible importance of supernova-driven blowouts for the central dark matter structure

of dwarf galaxies was already appreciated by Navarro, Eke & Frenk (1996) and Gnedin &

Zhao (2002), an important recent development is the understanding that even low-level star

formation over an extended period can drive gravitational potential fluctuations that lead

to dark matter core formation.

This general behavior is illustrated in Figure 13, which shows the impact of baryonic
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bCDM physics: „WDM-like“
suppression of small-scale power

• Warm dark matter suppression of matter power 
spectrum by free-streaming out of small 
perturbations while DM is relativistic

• Half-mode mass for thermal WDM:

• No unique m-kfs relation for resonantly produced 
sterile neutrinos; effects depend on non-thermal 
momentum distribution. 

• UV luminosity function at z=6 ⇒ mx ≳ 2.1 keV,             
m(νs) ≳ 6.1 keV (resonant) (Menci+ ’16)

• WDM delays formation of halos near Mhm relative to 
CDM ⇒ lower concentration ⇒ reduced Vmax for 
given halo ⇒ possible solution for TBTF

6 M. R. Lovell et al.

tutes part of a larger particle physics model called the
neutrino minimal standard model (νMSM), which explains
neutrino oscillations and baryogenesis in addition to yield-
ing a dark matter candidate, see Boyarsky et al. (2009)
for a review. The keV sterile neutrino behaves like WDM,
in that it free-streams out of small perturbations in the
early Universe. The resulting matter power spectrum cut-
off is influenced by two parameters: the sterile neutrino
mass, Ms, and the lepton asymmetry in which the dark
matter is generated (Shi & Fuller 1999; Boyarsky et al.
2009; Laine & Shaposhnikov 2008; Ghiglieri & Laine 2015;
Venumadhav et al. 2015). We parametrize the lepton asym-
metry as L6, which is defined as 106× the difference in lepton
and anti-lepton abundance normalised by the entropy den-
sity. The power spectrum cutoff shifts to smaller scales for
larger values of the mass, as is the case for thermal relic
WDM. By contrast, the behaviour with lepton asymmetry
is non-monotonic; for a recent discussion see Lovell et al.
(2016b).

We focus on the parameter space that is roughly in
agreement with the recent observations of the 3.5 keV emis-
sion line detected in Bulbul et al. (2014); Boyarsky et al.
(2014, 2015), which requires a sterile neutrino mass of 7 keV
and a lepton asymmetry in the range L6 = [8,11.2], where
the uncertainty in L6 is dominated by the uncertainty in
the dark matter content of the target galaxies and galaxy
clusters. The recent study by Ruchayskiy et al. (2015) set
a more stringent lower limit of L6 > 9; however, L6 = 8 re-
mains of interest as it has the shortest free-streaming length
obtainable by a 7 keV sterile neutrino of any lepton asym-
metry. We therefore select primarily three models for our
study, L6 = 8,10,12, in order to span the range of L6 that is
in agreement with the detected decay line. From hereon in
we refer to these models as LA8, LA10, and LA12. We also
briefly consider four further models to probe a larger range
of free streaming lengths: three 7 keV particles (L6=[14,18,
120]) and one 10 keV sterile neutrino with L6 = 7.

We first calculate the momentum distribution functions
for our three sterile neutrino models using the methods and
code of Laine & Shaposhnikov (2008) and Ghiglieri & Laine
(2015). From these distribution functions we then derive the
matter power spectra by means of a modified version of the
camb Boltzmann-solver code (Lewis et al. 2000). The re-
sults are plotted in Fig. 2 as dimensionless matter power
spectra. All three models exhibit a cutoff, and the cutoff po-
sition shifts to larger scales – smaller wavenumbers – with
increasing L6

2.
Also plotted is the power spectrum of the 2.3 keV ther-

mal relic studied by Wang et al. (2015b), who showed, us-
ing N-body simulations, that, since halo concentrations are
lower for WDM than for CDM haloes, this particular model
required subhaloes of Vmax ∼ 1.17 times higher than ΛCDM
to fit the kinematics and photometry of Fornax. We will use
this correction factor in our study to illustrate the impact of
lower sterile neutrino halo densities on their hosted galaxies.
We caution that this factor was derived for only one satellite
and for a dark matter model that has a larger free-streaming

2 L6 = 8 is the model for which the cutoff is located at the smallest
scale, since for smaller L6 the influence of resonant production is
weaker and thus the cutoff moves to larger scales.
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Figure 2. Matter power spectra for our four dark matter models:
CDM (black, solid), LA8 (blue), LA10 (orange) and LA12 (red).
The black dot-dashed line denotes the power spectrum of the
2.3 keV thermal relic studied in Wang et al. (2015b), and the
dashed line is the 3.3 keV thermal relic power spectrum used in
COCO-WDM (Bose et al. 2016).

length than any of our three primary WDM models. Our re-
sults for WDM should therefore be considered as a rough
approximation, rather than rigorous predictions. In addi-
tion, central halo masses < 1.4×1012M⊙ are disfavoured for
these models in the current model of reionization feedback
by virtue of their low satellite counts (Lovell et al. 2016b);
however, we include them here for completeness.

The application of the galform feedback model is com-
plicated in WDM-style models by the dependence of the
feedback strength on the halo circular velocity. In galform,
the strength of feedback is modelled as a power law of the cir-
cular velocity, where the power law index is denoted γ. The
lower circular velocities of WDM haloes lead to the result
that WDM models run using the CDM model parameters
under-predict the number of galaxies with MV <−16. A dis-
cussion of this issue can be found in Kennedy et al. (2014)
and Lovell et al. (2016b). We recalibrate the model against
the bJ band luminosity function and find that γ = 3.15 is a
good fit to the observational data for all three of our ster-
ile neutrino models as opposed to γ = 3.4 for the standard
CDM model. We therefore adopt γ = 3.15 for LA8, LA10,
and LA12, and retain γ = 3.4 for CDM.

We also make the following assumptions with regard to
the stripping algorithm in the sterile neutrino models:

• Given that WDM subhaloes deviate slightly from NFW
profiles (Coĺın et al. 2008; Lovell et al. 2014; Ludlow et al.
2016), a complete study would re-evaluate whether the Vmax-
Vvir relation (equation 6) would need to be recalibrated. For
simplicity we use equation 6 to calculate Vmax for all of our
models.

• Hydrodynamical models of WDM have shown that
WDM subhaloes exhibit the same degree of mass loss as
CDM haloes (Lovell et al. 2016a), thus equation 2 is equally
valid for our sterile neutrino simulations.

The stripping model is calibrated to CDM simulations,
in which the halo mass-concentration relation will play a key
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k). A characterization of the scale at which power is significantly a↵ected is given by the

half-mode scale khm = 2⇡/�hm, where the transfer function is reduced by 50% relative

to CDM. The half-mode wavelength �hm is approximately fourteen times larger than the

free-streaming length (Schneider et al. 2012), meaning that structure below ⇠ 5⇥ 1010 M�

is significantly di↵erent from CDM in a 1 keV thermal dark matter model:

Mhm = 5.5⇥ 1010
⇣
mWDM

1 keV

⌘�3.33
M� . (10)

Examples of power suppression for several thermal WDM models are shown by the dashed,

dotted, and dash-dotted lines in Fig. 2.

The lack of small-scale power in models with warm (or hot) dark matter is a testable

prediction. As the free-streaming length is increased and higher-mass dark matter substruc-

ture is erased, the expected number of dark matter satellites inside of a Milky Way-mass

halo decreases. The observed number of dark-matter-dominated satellites sets a lower limit

on the number of subhalos within the Milky Way, and therefore, a lower limit on the warm

dark matter particle mass. Polisensky & Ricotti (2011) find this constraint is m > 2.3 keV

(95% confidence) while Lovell et al. (2014) find m > 1.6 keV; these di↵erences come from

slightly di↵erent cosmologies, assumptions about the mass of the Milky Way’s dark matter

halo, and modeling of completeness limits for satellite detections.

It is important to note that particle mass and the free-streaming scale are not uniquely

related: the free-streaming scale depends on the particle production mechanism and is set

by the momentum distribution of the dark matter particles. For example, a resonantly-

produced sterile neutrino can have a much “cooler” momentum distribution than a particle

of the same mass that is produced by a process in thermal equilibrium (Shi & Fuller 1999).

Constraints therefore must be computed separately for each production mechanism (Merle

& Schneider 2015; Venumadhav et al. 2016). As an example, the e↵ects of Dodelson-Widrow

(1994) sterile neutrinos, which are produced through non-resonant oscillations from active

neutrinos, can be matched to e↵ects of thermal relics via the following relation:

m(⌫s) = 3.9 keV
⇣
mthermal

1 keV

⌘1.294
✓
⌦DMh

2

0.1225

◆�1/3

(11)

(Abazajian 2006; Bozek et al. 2016).

The e↵ects of power spectrum suppression are not limited to pure number counts of

dark matter halos: since cosmological structure form hierarchically, the erasure of small

perturbations a↵ects the collapse of more massive objects. The primary result of this

e↵ect is to delay the assembly of halos of a given mass relative to the case of no power

spectrum suppression. Since the central densities of dark matter halos reflect the density

of the Universe at the time of their formation, models with reduced small-scale power

also result in shallower central gravitational potentials at fixed total mass for halos within

2-3 dex of the free-streaming mass. This e↵ect is highlighted in the lower-middle panel

of Figure 15. It compares Vmax values for a CDM simulation and a WDM simulation

that assumes a thermal-equivalent mass of 2 keV but is otherwise identical to the CDM

simulation. Massive halos (Vmax & 50 km s�1) have identical structure; at lower masses,

WDM halos have systematically lower Vmax values than their CDM counterparts. This

e↵ect comes from a reduction of Vmax for a given halo in the WDM runs, not from there

being fewer objects. The reduction in central density due to power spectrum suppression

for halos near or just below the half-mode mass (but significantly more massive than the
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Figure 9. The WDM Vmax as a function of the matched CDM
Vmax on a halo-by-halo basis for Local Group field halos. The
di↵erent WDM model halos (L7 - black; S229 - blue; THM2 -
magenta) have a similar distribution that bends away from the
a one-to-one relation (orange curve) with CDM halos for smaller
halo masses, as a result of reduced central densities in the WDM
halos. The gray curve shows a fit to the points that includes all
WDM model halos. Fits to individual WDM model halo sets (not
shown) are similar to the fit for all WDM model halos.

with 8 < Vmax < 15 km s�1. The CDM field halos with
Vmax > 25 km s�1 (left column) have all WDM halo counter-
parts with Vmax > 15 km s�1. For CDM field halos with 15 <
Vmax < 25 km s�1 (right column), however, only a hand-
ful of WDM halo counterparts have a Vmax > 15 km s�1;
most have a Vmax value of 8 < Vmax < 15 km s�1. Since
the majority of WDM counterparts to the CDM field halos
with 15 < Vmax < 25 km s�1 have a Vmax value below the
artificial fragmentation limit, we plot the median rotation
curve and median density profile ratio for WDM counter-
parts with Vmax > 15 km s�1 (thick, solid curves) and for
WDM halos with Vmax > 8 km s�1 (thick, dashed curves) in
the right column panels of Figure 7. While the WDM halo
sets with Vmax > 8 km s�1 are possibly contaminated by ar-
tificial fragmentation, they represent the majority of WDM
counterparts to the CDM field halos in the low-mass bin.
If artificial fragmentation is not significant, then the WDM
field halos with Vmax > 8 km s�1 are the appropriate com-
parisons to CDM field halos with 15 < Vmax < 25 km s�1.
There is also a significant fraction of WDM counterpart ha-
los to CDM field halos with 15 < Vmax < 25 km s�1 that
have a Vmax below our resolution limit, Vmax < 8 km s�1

(not shown). We do include these halos in the subsequent
analysis.

The median rotation curves of the L7, THM2 and S229
WDM models, shown in the top row panels of Figure 7,
fall uniformly below the CDM rotation curves for both Vmax

sets. The reduction in the median WDM rotation curves rel-
ative to CDM is more pronounced in the lower mass halo sets
(top right panel) for the WDM halos with Vmax > 8 km s�1.
The median rotation curves of the L7, S229, and THM2
WDM models are similar for both Vmax sets, indicating that

each WDM model has, on average, a similar reduction in
the central density of their DM halo relative to CDM.

The bottom panels of Figure 7 show the ratio of the
WDM field halo density profiles to CDM. The median den-
sity ratios of the Local Group WDM field halo counter-
parts to CDM field halos with Vmax > 25 km s�1 (bottom
left panel) show that the CDM and WDM density profiles
converge in the outer halo near r = 20h�1 kpc. The in-
ner region of WDM density profiles reach an average reduc-
tion of ⇠40% at r  1h�1 kpc. For CDM field halos with
15 < Vmax < 25 km s�1, the median density ratios of the cor-
responding Local Group WDM field halo sets (bottom right
panel) show the WDM halos with Vmax > 15 km s�1 are less
dense than their CDM counterparts throughout, and are on
average ⇠60% less dense at r = 1h�1 kpc. Including the
WDM field halos with Vmax > 8 km s�1 in the comparison
lowers the median density ratio an additional 10% in the cen-
tral r  1h�1 kpc and an additional 20% at r = 10h�1 kpc
near the average halo virial radius. The median density ra-
tios of the L7, S229, and THM2 WDM models are quantita-
tively similar at all radii for both Vmax sets and independent
of the limiting WDM halo mass.

The reduction in the WDM central density is related to
later formation times of WDM halos relative to CDM halos,
which collapse earlier when the background matter density
of the universe is greater. For both Vmax sets, there is con-
siderable scatter in the individual halo density ratios at all
radii. This spread in internal density ratios is reflected in the
WDM rotation curves of the both mass set in the top panels.
The CDM rotation curves are tightly clustered around the
median, while the WDM sets show a larger degree of scatter.
We find that, for an individual CDM halo, it is di�cult to
predict the exact amount of reduction in the corresponding
WDM halo density profile (and likewise the rotation curve),
however, in general, the less massive the CDM field halo the
greater the reduction in the density profile (rotation curve)
at all radii.

The internal properties of the WDM subhalos of the
Thelma and Louise host halos are also significantly di↵erent
than their CDM counterparts. We follow the same selec-
tion process for the host subhalos sets, with the exception
that the CDM subhalos and their WDM counterparts are
required to be within the virial radius of either host. For
the Vmax > 25 km s�1 subhalo sets, shown in the left col-
umn of Figure 8, the median rotation curves and median
density profile ratios of each DM model are quantitatively
similar to the median values of the Vmax > 25 km s�1 Local
Group field halos. The L7, S229, and THM2 WDM models
each have a ⇠40% reduction at r  1h�1 kpc in the median
density ratios and a ⇠5 km s�1 drop in the median WDM
rotation curves relative to the median CDM rotation curve,
just as we found for the Local Group field halos. We find
no significant di↵erence in the L7, S229, and THM2 model
median rotation curves or density profile ratios.

The median rotation curve of CDM subhalos with
15 km s�1 < Vmax < 25 km s�1 is also similar to the CDM
Local Group field halo median rotation curve. The me-
dian rotation curves of the WDM subhalo counterparts with
Vmax > 15 km s�1 (shown in the top right panel of Figure
8), however, have only a few km s�1 reduction in magnitude
relative to CDM. The median density ratios of the WDM
subhalos with Vmax > 15 km s�1 show only a 40% reduction
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bCDM physics: „SIDM-like“
enhanced thermalization / relaxation

• Self-interacting dark matter (Spergel & Steinhardt ’00; recent review: Tulin & Yu, arXiv:1705.02358)
• Interactions thermalize the inner halo, reduce its density, and make it more spherical; 

possible solution to cusp-core and TBTF problems
• Need  σ ≳ 1 cm2 g-1 to form cores in spiral galaxies, while Bullet Cluster and halo shapes 

require  σ ≲ 0.7 cm2 g-1 ⇒ velocity dependent cross section (e.g. from ADM)

• Doesn’t strongly affect the missing satellite problem

FIG. 9: Left: Density profiles for halo with mass ⇠ 1010 M� (dubbed “Pippin”) from DM-only simulations
with varying values of �/m. Right: Rotation curves for Pippin halo with �/m & 0.5 cm2/g are broadly
consistent with measured stellar velocities (evaluated at their half-light radii) for field dwarf galaxies of the
Local Group. Reprinted from Ref. [111].

50 cm2
/g, leads to an increasing central density, indicating this halo has entered core collapse.

Nevertheless, core collapse is mild. Density profiles with �/m = 0.5 � 50 cm2
/g, spanning

two orders of magnitude, vary in their central densities by only a factor of ⇠ 3. Comparing with
data for field dwarfs in the Local Group, Fig. 9 (right) shows that predicted SIDM rotation curves
for 0.5 � 50 cm2

/g are consistent with the velocities and half-light radii inferred from several
observed galaxies. This illustrates not only how SIDM affects both the core-cusp and TBTF
problems simultaneously, but that �/m need not be fine-tuned to address these issues.

The conclusion from these studies is that �/m & 0.5 cm2
/g can produce O(kpc) cores needed

to resolve dwarf-scale anomalies [111]. However, the upper limit on �/m at these scales—due to
core collapse producing a too-cuspy profile—remains unknown.

Cluster scales: Next, we turn to clusters (Mhalo ⇠ 1014�1015 M�). The first cosmological sim-
ulations at these scales were performed by Yoshida et al. [101], which studied a single 1015 M�
halo for �/m = 0.1, 1, and 10 cm2

/g. More recently, Rocha et al. [94] performed simulations
targeting similar scales, but over much larger cosmological volume, for �/m = 0.1 and 1 cm2

/g.
The best-resolved halos in their volume span 1012�1014 M�. For 1 cm2

/g, the central density pro-
files are clearly resolved for the Yoshida halo and for ⇠ 50 Rocha halos. On cluster scales, SIDM
halos have O(100 � 200 kpc) radius cores and central densities ⇢0 ⇠ few ⇥ 10�3 M�/pc3. For
�/m = 0.1 cm2

/g, the simulations lack sufficient resolution to fully resolve the cored inner halo,
though O(30 kpc) radius cores seem a reasonable estimate. For �/m = 10 cm2

/g, the Yoshida
halo has a similar density profile compared to 1 cm2

/g, although the former is considerably more
spherical (ellipticity is discussed below).

It is important to note that SIDM halos exhibit variability in their structure. Within the Rocha
et al. [94] halo sample, SIDM halos, with fixed �/m = 1 cm2

/g and fixed Vmax, show an order-of-
magnitude scatter in their central densities. The dwarf halo samples from Davé et al. [102] show a
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FIG. 9: Left: Density profiles for halo with mass ⇠ 1010 M� (dubbed “Pippin”) from DM-only simulations
with varying values of �/m. Right: Rotation curves for Pippin halo with �/m & 0.5 cm2/g are broadly
consistent with measured stellar velocities (evaluated at their half-light radii) for field dwarf galaxies of the
Local Group. Reprinted from Ref. [111].

50 cm2
/g, leads to an increasing central density, indicating this halo has entered core collapse.

Nevertheless, core collapse is mild. Density profiles with �/m = 0.5 � 50 cm2
/g, spanning

two orders of magnitude, vary in their central densities by only a factor of ⇠ 3. Comparing with
data for field dwarfs in the Local Group, Fig. 9 (right) shows that predicted SIDM rotation curves
for 0.5 � 50 cm2

/g are consistent with the velocities and half-light radii inferred from several
observed galaxies. This illustrates not only how SIDM affects both the core-cusp and TBTF
problems simultaneously, but that �/m need not be fine-tuned to address these issues.

The conclusion from these studies is that �/m & 0.5 cm2
/g can produce O(kpc) cores needed

to resolve dwarf-scale anomalies [111]. However, the upper limit on �/m at these scales—due to
core collapse producing a too-cuspy profile—remains unknown.

Cluster scales: Next, we turn to clusters (Mhalo ⇠ 1014�1015 M�). The first cosmological sim-
ulations at these scales were performed by Yoshida et al. [101], which studied a single 1015 M�
halo for �/m = 0.1, 1, and 10 cm2

/g. More recently, Rocha et al. [94] performed simulations
targeting similar scales, but over much larger cosmological volume, for �/m = 0.1 and 1 cm2

/g.
The best-resolved halos in their volume span 1012�1014 M�. For 1 cm2

/g, the central density pro-
files are clearly resolved for the Yoshida halo and for ⇠ 50 Rocha halos. On cluster scales, SIDM
halos have O(100 � 200 kpc) radius cores and central densities ⇢0 ⇠ few ⇥ 10�3 M�/pc3. For
�/m = 0.1 cm2

/g, the simulations lack sufficient resolution to fully resolve the cored inner halo,
though O(30 kpc) radius cores seem a reasonable estimate. For �/m = 10 cm2

/g, the Yoshida
halo has a similar density profile compared to 1 cm2

/g, although the former is considerably more
spherical (ellipticity is discussed below).

It is important to note that SIDM halos exhibit variability in their structure. Within the Rocha
et al. [94] halo sample, SIDM halos, with fixed �/m = 1 cm2

/g and fixed Vmax, show an order-of-
magnitude scatter in their central densities. The dwarf halo samples from Davé et al. [102] show a
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FIG. 3. The centripetal acceleration observed in rotation
curves, gobs = V 2/R, is plotted against that predicted for
the observed distribution of baryons, gbar = |@�bar/@R| in
the upper panel. Nearly 2700 individual data points for 153
SPARC galaxies are shown in grayscale. The mean uncer-
tainty on individual points is illustrated in the lower left cor-
ner. Large squares show the mean of binned data. Dashed
lines show the width of the ridge as measured by the rms in
each bin. The dotted line is the line of unity. The solid line
is the fit of eq. 4 to the unbinned data using an orthogonal-
distance-regression algorithm that considers errors on both
variables. The inset shows the histogram of all residuals and
a Gaussian of width � = 0.11 dex. The residuals are shown
as a function of gobs in the lower panel. The error bars on the
binned data are smaller than the size of the points. The solid
lines show the scatter expected from observational uncertain-
ties and galaxy to galaxy variation in the stellar mass-to-light
ratio. This extrinsic scatter closely follows the observed rms
scatter (dashed lines): the data are consistent with negligible
intrinsic scatter.

Nevertheless, the radial acceleration relation persists
for all galaxies of all types. Some galaxies only probe the
high acceleration regime while others only probe the low
end (Fig. 2). The outer regions of high surface brightness
galaxies map smoothly to the inner regions of low surface
brightness galaxies. These very di↵erent objects evince
the same mass discrepancy at the same acceleration. In-
dividual galaxies are indistinguishable in Fig. 3.

TABLE I. Scatter Budget for Acceleration Residuals

Source Residual

Rotation velocity errors 0.03 dex

Disk inclination errors 0.05 dex

Galaxy distance errors 0.08 dex

Variation in mass-to-light ratios 0.06 dex

HI flux calibration errors 0.01 dex

Total 0.12 dex

Figure 3 combines and generalizes four well-established
properties of rotating galaxies: flat rotation curves in the
outer parts of spiral galaxies [1, 2]; the “conspiracy” that
spiral rotation curves show no indication of the tran-
sition from the baryon-dominated inner regions to the
outer parts that are dark matter-dominated in the stan-
dard model [35]; the Tully-Fisher [3] relation between the
outer velocity and the inner stellar mass, later general-
ized to the stellar plus atomic hydrogen mass [4]; and the
relation between the central surface brightness of galaxies
and their inner rotation curve gradient [37–39].
It is convenient to fit a function that describes the data.

The function [40]

gobs = F(gbar) =
gbar

1� e�
p

gbar/g†
(4)

provides a good fit. The one fit parameter is the acceler-
ation scale, g†, where the mass discrepancy becomes pro-
nounced. For our adopted ⌥?, we find g† = 1.20 ± 0.02
(random) ±0.24 (systematic) ⇥10�10 ms�2. The ran-
dom error is a 1� value, while the systematic uncertainty
represents the 20% normalization uncertainty in ⌥?.
Equation 4 provides a good description of ⇠2700 in-

dividual data points in 153 di↵erent galaxies. This is a
rather minimalistic parameterization. In addition to the
scale g†, eq. 4 implicitly contains a linear slope at high
accelerations and gobs /

p
gbar at low accelerations. The

high end slope is sensible: dark matter becomes negligi-
ble at some point. The low end slope of the data could
in principle di↵er from that implicitly assumed by eq. 4,
but if so there is no indication in these data.
Residuals from the fit are well described by a Gaussian

of width 0.11 dex (Fig. 3). The rms scatter is 0.13 dex
owing to the inevitable outliers. These are tiny num-
bers by the standards of extragalactic astronomy. The
intrinsic scatter in the relation must be smaller still once
scatter due to errors are accounted for.
There are two types of extrinsic scatter in the radial

acceleration relation: measurement uncertainties and
galaxy to galaxy variation in ⌥?. Measurement uncer-
tainties in gobs follow from the error in the rotation veloc-
ities, disk inclinations, and galaxy distances. The mean
contribution of each is given in Table I. Intrinsic scatter
about the mean mass-to-light ratio is anticipated to be

Other potential problems with no 
obvious relation to bCDM physics

• Satellite planes:
– Satellite galaxies appear to lie in a polar plane for  

MW, M31, and Centaurus A
– May not be in strong conflict with CDM (Cautun+ ’15)

– Dependence on LSS environment suggests 
connection to accretion history (Wang+ ’18)

• Regularity vs. diversity
– Baryonic Tully-Fisher Relation: tight correlation 

between baryonic mass and rotation velocity, 
independent of other galaxy properties: Mbar ~ V4

– Radial Acceleration Relation: observed radial 
acceleration strongly correlated with that due to 
baryons (generalization of BTF) (McGaugh+ ’16)

– Observed scatter in Vmax much greater than predicted 
by simulations but correlation with baryons nearly 
exact

– ΛCDM robustly predicts RAR in high acceleration 
region including turn-over, but lower part more difficult 
(Navarro+ ’16)

6 Cautun et al.

we end up with 7350 mock satellite systems in MS-II and
180 in COCO.

4.1 The M31 system

In a first step, we apply our method to the actual PAndAS
observations of M31. We do not use the same plane identifi-
cation method as Ibata13, so it is important to check what it
is that our approach identifies as the most prominent plane
of the M31 system. To account for observational errors, we
generate 1000 Monte Carlo realizations that sample the ra-
dial distance PDFs (Conn et al. 2012, Table 1) and radial
velocities (Collins et al. 2013, Table 5) of the M31 satellites.

In the case of the M31 system, the observational data
allow for the identification of spatial and spatial + 2D-
kinematic planes. For each Monte Carlo realization of the
M31 system, we identify the rarest plane. Due to the large
radial distance errors, the rarest plane can vary between re-
alizations. For example, the rarest spatial plane contains 14
members in 72% of the cases and 13 members in 22% of
realizations. In the remaining 6% of realizations it contains
even fewer satellites. For simplicity, we take the rarest plane
as the one that is identified as such in the largest number
of realizations. The rarest planar configurations of the M31
system and its characteristics are shown in Table 1.

We find that the rarest spatial plane consists of 14 satel-
lites that are the same as the 15 members of the plane re-
ported by Ibata13, except And III. This is in agreement with
the results of Ibata13, who point out that choosing 13 or 14
satellites results in a higher spatial significance, i.e. lower
probability of being obtained from an isotropic distribution,
than for the full sample of 15. The spatial + 2D-kinematic
plane found by our approach is the same as the one reported
by Ibata13, even though our plane identification method is
di↵erent. Ibata13 reported the significance of the M31 plane
as compared to an isotropic distribution, so it is possible that
they inadvertently choose the parameters of their method
(see Sec. 3) such that it maximizes the plane significance.
If that was the case, then both plane finding methods are
basically the same.

4.2 The rarest M31-like planes

To better understand the M31 plane of satellites, we start
by assessing the chance of obtaining more prominent planar
configurations within ⇤CDM. This is shown in Fig. 2, where
we plot the cumulative distribution function (CDF) of the
prominence, P rarest

spatial, of the rarest spatial planes. There is
a very good match between the MS-II and COCO haloes,
which suggests that satellite planes found in MS-II are not
significantly a↵ected by the limited resolution of the sim-
ulation. We find that most haloes have prominent planar
configurations, for example 37, 12 and 4% of haloes have
planes with P rarest

spatial > 102, 103 and 104 respectively.
The prominence is not simply the inverse of the proba-

bility for isotropic satellite distributions for reasons that will
be discussed in Sec. 4.3. As such, the figure also shows the
rarest planes found in an isotropic distribution of satellites.
To obtain these, for each of the ⇤CDM haloes, we gener-
ate an isotropic distribution by choosing random polar and
azimuthal angles, while keeping the radial position of each
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Figure 2. The CDF of the prominence, P rarest
spatial, of the rarest

spatial plane of satellites for mock PAndAS observations. The
solid line gives the MS-II results, while the dashed line shows re-
sults for COCO, which has much higher resolution. The dotted
curve gives the expectation for isotropic satellite distributions.
The vertical dashed line and shaded region show the prominence
and the 1� error for M31’s spatial plane of satellites. We find that
12+6

�4% of ⇤CDM haloes have a more prominent planar configu-
ration than M31. The top x-axis shows the detection significance
of each plane computed using the isotropic CDF (dotted curve)
and accounts for the look-elsewhere e↵ect.
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Figure 3. As Fig. 2, but for the prominence, P rarest
spatial+ 2D-kin,

of the rarest spatial + 2D-kinematic plane of satellites. This case
corresponds to the M31 plane identified by Ibata13. For this test,
8.8+2.8

�1.8% of ⇤CDM hosts have a more prominent plane than M31.

satellite fixed. We then apply the same plane identification
procedure to each isotropic satellite distribution. Unsurpris-
ingly, we find a clear di↵erence between the isotropic and
⇤CDM results, with the isotropic CDF shifted towards the
left of the ⇤CDM CDF. This suggest that, compared to a
uniform distribution, there is more structure in the distribu-
tion of ⇤CDM satellites, in agreement with previous studies
(e.g. Libeskind et al. 2005; Wang, Frenk & Cooper 2013;
Pawlowski et al. 2014).

The corresponding M31 plane, entry (1) from Table 1,
is shown as the dashed vertical line. It has a prominence,
P rarest
spatial = 1.0+1.1

�0.5 ⇥ 103, which means that for an isotropic
distribution there is only a 1 in 1000 chance of obtaining
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Classic small-scale problems and solutions
problem:
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missing satellites cusp-core too big to fail

baryons: 
SF efficiency 
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gravitational 
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bCDM physics: „PBH-like“
formation of compact objects

• Formation of primordial black holes in theories with non-vanilla inflation and/or particle content
• Micro- etc. lensing sensitive to masses below ~10 M⊙

• Dynamical heating of stars in dwarf galaxies constrains MACHO dark matter for masses above 
~10 M⊙ (Brandt ’16, Koushiappas & Loeb ’17)

• Purely gravitational probes, apply equally to other compact objects or substructure

5

Fig. 4.— Constraints on MACHO dark matter from microlens-
ing (blue and purple, Alcock et al. 2001; Tisserand et al. 2007) and
wide Galactic binaries (green, Quinn et al. 2009), shown together
with the constraints from the survival of compact ultra-faint dwarf
galaxies and the star cluster in Eridanus II. I conservatively adopt a
dark matter density of 0.02 M⊙ pc−3 in Eri II and 0.3 M⊙ pc−3 in
the ultra-faint dwarfs, assume a three-dimensional velocity disper-
sion σ = 8 kms−1, and use two definitions of the heating timescale.
A low-density halo and initially compact cluster weaken the con-
straints from Eri II. Even in this case, assuming dark matter halos
to have the properties that are currently inferred, MACHO dark
matter is excluded for all MACHO masses !10−7 M⊙.

portional to the cluster mass (Binney & Tremaine 2008),
and the cluster in Eri II is 1.5–2 orders of magnitude less
massive than Fornax 4 (Mackey & Gilmore 2003), the
Fornax globular cluster nearest the center of that dwarf
(at 240 pc in projected separation). This scenario there-
fore requires very different dark matter halos in the two
galaxies or severe mass loss during Eri II’s inspiral, and
also luck to catch the cluster on the point of disruption.
This problem of coincidence is generic to any scenario in
which Eri II’s cluster was initially compact. The proba-
bility of observing the system in such a transient state is
significantly higher if the cluster’s age is ∼3 Gyr rather
than ∼12 Gyr.
Other possibilities to evade the constraints include

an intermediate-mass black hole (!104 M⊙) to provide

binding energy, or a chance alignment such that the clus-
ter only appears to reside in the center of Eri II. Both
would be surprising. Such a black hole would have a mass
comparable to the total stellar mass of its host galaxy. A
massive black hole would also be expected to host a re-
laxed MACHO cluster of comparable mass, in which case
it may not avoid the problem of dynamical heating at all.
A chance alignment of a cluster physically located at the
galaxy’s half-light radius is possible; the most näıve esti-
mate, the fraction of solid angle lying within a few rh in
projection, gives a chance alignment probability of ∼1%
at a physical distance of ∼300 pc from the galaxy core.
While many scenarios could, in principle, account for

the survival of the star cluster in Eri II, it is harder to
appeal to coincidence for the entire sample of compact
ultra-faint dwarfs. Assuming the measured velocity dis-
persions to reflect the properties of their dark matter
halos, these dwarfs should have much larger half-light
radii if their dark matter is all in the form of MACHOs
!10 M⊙. The strongest constraints, however, may come
from the cluster in Eri II, and could be improved with
better data. Precise photometry with the Hubble Space
Telescope could resolve the question of whether the clus-
ter is intermediate-age or old, while spectroscopy of clus-
ter members and nonmembers would give another probe
of Eri II’s dark matter content. While future observa-
tions will determine the strength of the constraints from
Eri II, existing data from Eri II and from the sample of
compact ultra-faint dwarfs appear sufficient to rule out
dark matter composed exclusively of MACHOs for all
masses above ∼10−7 M⊙.

I thank Ben Bar-Or, Juna Kollmeier, Kris Sigurdson,
and especially Scott Tremaine for helpful conversations
and suggestions, and an anonymous referee for helpful
comments. This work was performed under contract with
the Jet Propulsion Laboratory (JPL) funded by NASA
through the Sagan Fellowship Program executed by the
NASA Exoplanet Science Institute.
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Crnojević, D., Sand, D. J., Zaritsky, D., et al. 2016, ArXiv

e-prints, 1604.08590
Ferrer, F., & Hunter, D. R. 2013, JCAP, 9, 005
Georgiev, I. Y., Hilker, M., Puzia, T. H., Goudfrooij, P., &

Baumgardt, H. 2009, MNRAS, 396, 1075

Goerdt, T., Moore, B., Read, J. I., Stadel, J., & Zemp, M. 2006,
MNRAS, 368, 1073

Griest, K. 1991, ApJ, 366, 412
Harris, W. E. 1996, AJ, 112, 1487
Hernández, X., Matos, T., Sussman, R. A., & Verbin, Y. 2004,

PhRvD, 70, 043537
Hodge, P. W. 1961, AJ, 66, 83
Inoue, S. 2011, MNRAS, 416, 1181
Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E., &
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FIG. 7: Constraints on the mass (M) and abundance (fp) of
compact dark matter. Shaded regions show excluded regions
from caustic crossing studied in this paper, microlensing ob-
servations of M31 with Subaru/Hyper Suprime-Cam (HSC)
[11], EROS/MACHO microlensing [6, 9], ultra-faint dwarf
galaxies (UFDs) [42], and Planck cosmic microwave back-
ground observations (Planck) [43]. For UFDs and Planck,
conservative limits are shown by solid lines, whereas more
stringent limits are shown by dashed lines.

dark matter becomes much smaller than the source size.
In this case, any lensing effects by compact dark matter
is smeared out due to the finite source size effect, and as
a result it does not cause any saturation. We can write
this condition as

θE√
µt

! βR. (74)

Given the allowed range of the source radius R and µt <
100, this condition reduces to

M ! 1.5× 10−5M⊙. (75)

From this argument, we can derive constraints on the
mass M and abundance fp of compact dark matter. Fig-
ure 7 shows the rough excluded region in the M -fp plane
from the observation of MACS J1149 LS1. As discussed
in [1], the very high abundance of ∼ 30 M⊙ black holes
[29], which is motivated by recent observations of gravita-
tional waves [44], is excluded, although more careful com-
parisons with simulated microlensing light curves should
be made in order to place more robust constraints.
We expect that we can place tighter constraints on

compact dark matter from long monitoring observations
of giant arcs and careful analysis of observed light curves.
This is because point mass lens with different masses have
quite different characteristics of light curves such as time
scales and peak magnifications. Therefore, observations
or absence of light curve peaks with different time scales
may be used to place constraints on the abundance of
compact dark matter with different masses, although we
have to take account of the uncertainty in the velocity for

the robust interpretation. As discussed in [26], another
clue may be obtained by detailed observations of light
curves before and after the peak. As mentioned above,
in order to obtain robust constraints on compact dark
matter from observations, it is also important to conduct
ray-tracing simulations that include both ICL stars and
compact dark matter, as was partly done in [26]. Ray-
tracing simulations are helpful to better understand what
kind light curves such compound lens system predict.

VII. SUMMARY AND DISCUSSIONS

In this paper, we have adopted a simple analytical lens
model that consists of a point mass lens and a constant
convergence and shear field, which is used to study lens-
ing properties of a point mass lens embedded in high
magnification regions due to the cluster potential. This
model has been used to derive characteristic scales of
caustic crossing events in giant arcs, such as the time
scale of light curves and maximum magnifications, as a
function of the mass of the point mass lens and the ra-
dius of the source star. We have tuned model parame-
ters to the MACS J1149 LS1 event to constrain lens and
source properties of this event. We have also computed
expected event rates, and derived additional constraints
on the lens and source properties of MACS J1149 LS1.
Our results that are summarized in Figures 3 and 4

indicate that MACS J1149 LS1 is fully consistent with
microlensing by ICL stars. The allowed ranges of the
lens mass and source radius are 0.1 M⊙ ! M ! 4 ×
103M⊙ and 40 R⊙ ! R ! 260 R⊙, respectively. The
most plausible radius of the source star is R ≈ 180 R⊙

(luminosity L ≈ 6 × 105 L⊙), which is consistent with
a blue supergiant. In this case, the source star should
have been magnified by a factor of ≈ 4300 at the peak.
Our results suggest that the allowed ranges of the lens
mass and source radius are relative narrow, which limit
the possibility of explaining MACS J1149 LS1 by exotic
dark matter models.
We have discussed the possibility of constraining com-

pact dark matter in the presence of ICL stars. Using
the saturation argument, we have shown that compact
dark matter models with high fractional matter densi-
ties (fp " 0.1) for a wide mass range of 10−5M⊙ !
M ! 102M⊙ are inconsistent with the observation of
MACS J1149 LS1 because such models predict too low
magnifications at the position of MACS J1149 LS1. We
note that this constraint from the saturation condition
should be applicable to the total compact dark matter
fraction for models with extended mass functions [45].
We expect that we can place tighter constraints on the
abundance and mass of compact dark matter by careful
analysis of observed light curves as well as more observa-
tions of caustic crossing events.
In this paper, we have assumed a single star as a source.

As discussed in [1], there is a possibility that the source
is in fact a binary star, based on multiple peaks in the

Brandt ’16

lensing dynamical



bCDM physics: „axion-like“
all of the above!

QCD axions
• Formation of axion miniclusters (Tkachev ’86; Hogan,Rees ’88; Kolb,Tkachev ’93/94; Zurek+ ’07)  

– relevant for direct detection experiments
– potentially observable in fast radio bursts, tidal streams, microlensing  (Tkachev ’15, Tinyakov+ ’16, Fairbairn+ ’17)

• Formation of axion stars (e.g. Levkov+ ’18)  („PBH-like“)

Ultralight axions
• Suppression of small-scale perturbations  („WDM-like“)

– high-z luminosity functions (Bozek+ ’15, Schive+ ’16, Corasaniti+ ’17, 
Menci+ ’17)
– Lyman-α forest (Iršič+ ’17, Armengaud+ ’17) → m ≳ 10-21 eV
– reionization (Bozek+ ’15; Schneider ’18; Lidz, Hui ’18)

(N.B. most simulations use standard N-body with modified transfer function)

• Incoherent interference patterns and granularity on 
scales of λdB ~ 1 … 100 kpc

– „quasi-particle relaxation“ → subhalo orbit decay, dark disk, 
…  (Hui+ ’17)   („SIDM-like“)
– halo substructure evolution (Du+ ’18)

• Formation of coherent solitonic halo cores
– cusp-core etc., halo substructure (Marsh,Silk ’13, Schive+ ’14, 

Marsh,Pop ’15, Calabrese,Spergel ’16, Du+ ’16) 

Schive+ ’14
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Siddhartha & Uréna-López 2003) or even one-dimensional (Hu
et al. 2000) to study this problem. These simplifications may
not capture what actually results in a three-dimensional system
with realistic initial conditions. In particular, the existence of a
flattened core has been derived or inferred from these previous
works of one-dimensional system or with spherical symmetry.
In this paper, we report high-resolution fully three-dimensional
simulations for this problem. Surprisingly, our simulations re-
veal that the singular cores of bound objects remain to exist even
when the core size is much smaller than the Jean’s length.

In Section 2, we provide an explanation for the possible
existence of the Bose–Einstein state for the extremely low
mass bosons under investigation here. We then discuss two
different representations of ELBDM and the evolution of linear
perturbations for the two representations. In Section 3, the
numerical scheme and initial condition are described. We
present the simulation results in Section 4. In Section 5, we
look into the physics of collapsed cores with detailed analyses
from different perspectives. Finally, the conclusion is given in
Section 6. In the Appendix, we present results of one- and two-
dimensional simulations and demonstrate that singular cores do
not occur in one- and two-dimensional cases.

2. THEORY

2.1. Bose–Einstein Condensate

A Bose–Einstein condensate (BEC) is a state of bosons cooled
to a temperature below the critical temperature. BEC happens
after a phase transition where a large fraction of particles
condense into the ground state, at which point quantum effects,
such as interference, become apparent on a macroscopic scale.
The critical temperature for a gas consisting of noninteracting
relativistic particles is given by (Burakovsky & Horwitz 1996)

Tc ∼
(nch

3m

)1/2
, (1)

where the Boltzmann’s constant and speed of light have been
set to unity. Given the extremely low particle mass assumed
here, Tc is derived from the relativistic Bose–Einstein particle–
antiparticle distribution with the chemical potential set to
particle mass m. Here, the “charge” density nch ≡ n+ − n−,
where n+ and n− are the number densities of particles and
antiparticles in excited states. On the other hand, we have
nch ∼ (m/T )n+, and it follows that Tc ∼

(
n+
3T

)1/2. Note that
n+ scales as a−3 and T as a−1, and it follows Tc scales as
a−1. It means that when T is below Tc at some time after a
phase transition, the temperature will remain subcritical in any
later epoch. As an estimate, if we assume 1% of ELBDM to
be in the excited states after its decoupling, the current critical
temperature becomes

Tc = 3 × 10−14
( m

eV

)−1/2
(

T

eV

)−1/2

eV. (2)

Substituting m ∼ 10−22 eV and T ∼ 10−4 eV, the same as
the present photon temperature, we find that the current critical
temperature Tc = 0.3 eV ≫ T . Hence ELBDM, if exists and
accounts for the dark matter, may very well be in the BEC
state ever since a phase transition in the early universe. Despite
ELBDM particles in the excited state are with a relativistic
temperature, almost all particles are in the ground state and
described by a single nonrelativistic wave function.

2.2. Basic Analysis

The Lagrangian of nonrelativistic scalar field in the comoving
frame is

L = a3

2

[
ih̄

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
+

h̄2

a2m
(∇ψ)2 − 2mV ψ2

]
,

(3)
and the equation of motion for this Lagrangian gives a modified
form of Schrödinger’s equation (Siddhartha & Uréna-López
2003):

ih̄
∂ψ

∂t
= − h̄2

2a2m
∇2ψ + mV ψ, (4)

where ψ ≡ φ(n0/a
3)−1/2 with φ being the ordinary wave

function, n0 the present background number density, and V is
the self-gravitational potential obeying the Poisson equation,

∇2V = 4πGa2δρ = 4πG

a
ρ0(|ψ |2 − 1). (5)

The only modification to the conventional Schrödinger–Poisson
equation is the appearance a−1 associated with the comoving
spatial gradient ∇, and the probability density |ψ |2 to be
normalized to the background proper density ρ/m. In the above,

ρ0 ≡ 3H 2
0

8πG
Ωm = mn0 (6)

is the background mass density of the universe.
To explore the nature of the ELBDM, we first adopt the

hydrodynamical description to investigate its linear evolution.
This approach is not only more intuitive than the wave function
description, its advantage will also become apparent later. Let
the wave function be

ψ =
√

n

n0
ei S

h̄ , (7)

where n = n̄a3, the comoving number density and n̄ is
the proper number density. The quadrature of Schrödinger’s
equation can be split into real and imaginary parts, which
become the equations of acceleration and density separately,

∂

∂t
v +

1
a2

v · ∇v +
∇V

m
− h̄2

2m2a2
∇

(∇2√n√
n

)
= 0 (8)

∂n

∂t
+

1
a2

∇ · (nv) = 0, (9)

where v ≡ ∇S/m is the fluid velocity. There is a new term
depending on the third-order spatial derivative of the wave
amplitude

√
n in the otherwise cold-fluid force equation. This

term results from the “quantum stress” that acts against gravity,
and it can be cast into a stress tensor in the energy and
momentum conservation equation (Chiueh 1998, 2000). The
quantum stress becomes effective only when the spatial gradient
of the structure is sufficiently large.

The fluid equations, Equations (5), (8), and (9), are linearized
and combined to yield

∂

∂t
a2 ∂

∂t
δn − 3H0

2Ωm

2a
δn +

h̄2

4m2a2
∇2∇2δn = 0. (10)

Upon spatially Fourier transforming δn, it follows

d

dt
a2 dnk

dt
−

(
3H0

2Ωm

2a

)
nk +

h̄2k4

4m2a2
nk = 0, (11)

N-body



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

time [Gyr]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
M

c
/M

c
,0

5

r1/2. As can be seen in Fig. 5, the core of the halo is
the only local maximum that is in itself gravitationally
bound and close to virialized. It is therefore a stable ob-
ject whereas the granules have a finite lifetime of order
⌧ = ~/mv

2
vir, as confirmed by the temporal correlation

functions inside and outside of the core discussed below
(cf. Fig. 8).

B. Time evolution

Schive et al. [29] found the following relation between
the core mass Mc and the total halo mass Mh (their Eq.
6):

Mc =
1

4
a

�1/2
vir

✓
⇣(avir)

⇣(0)

◆1/6 ✓
Mh(avir)

M0

◆1/3

M0 , (15)

with ⇣(a) from Eq. (9) and M0 ⇠ 4.4 ⇥ 107
m

�3/2
22 M�.

For comparison with [29], we also define Mc as the mass
enclosed by the radius xc where the peak density drops
by a factor of 1/2 and the density is assumed to follow
a ground-state soliton profile (their Eq. 3). As discussed
below, this is only approximately true owing to the strong
oscillations of the core (see Fig. 7).

Note that we define Mc using fixed values for a, eval-
uated roughly at the time of halo virialization, instead
of using the time-dependent scale factor and halo mass
as done in [29]. This is motivated by our current un-
derstanding of the dynamics of core formation which de-
termines Mc (cf. Section IV). Figure 6 shows the evolu-
tion of core masses from our sample of halos as a func-
tion of time, normalized to Eq. (15). Using the time-
dependent values for a, ⇣ and Mh for the normalization
produces di↵erences that are small and unrelated to the
halo mass. The time of virialization is determined by the
requirement that the measured virial mass has settled
to a slowly varying value. Spurious fluctuations of Mc

resulting from oscillations of the peak density on much
smaller timescales are smoothed by taking a moving aver-
age. As can be seen, there is no clear trend for deviations
from Eq. (15) across cosmological timescales. In particu-
lar, no systematic growth of Mc by relaxation is observed
for the majority of cores. Whether or not the mass in-
crease of two of our simulated cores is related to ongoing
condensation cannot be unambiguously answered at this
point.

Analysis of the core density with much finer temporal
resolution reveals oscillations with amplitudes of more
than a factor of two close to the dynamical timescale of
the core (Fig. 7). The frequency spectrum exhibits a
peak at the quasi-normal frequency [48]

f = 10.94

✓
⇢c

109 M�kpc
�3

◆1/2

Gyr�1
, (16)

with the central soliton density ⇢c. We thus find that
cores form in a state with strong quasi-normal excita-
tions, failing to relax to the ground state by gravitational

FIG. 6. Core masses from simulated halos normalized by
Eq. (15) at formation time as a function of halo age. The
data points are smoothed in time with a Gaussian filter with
� = 0.3 Gyr. The shaded area represents the local standard
deviation associated with the smoothing process.

FIG. 7. Top: Maximum comoving density of a halo over time.
Bottom: Fourier transform of the same data. The boundaries
of the shaded region are the expected quasi-normal periods
given the minimum and maximum central density in the time
series above.

cooling on evolutionary timescales. This result may open
up new directions for observational probes of FDM cores.

C. Correlation functions

The spatial correlation function normalized to the
virial de Broglie scale of the halo, �dB = ~/mvvir,

C(x) =
h�(x1)�(x2)ix
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, (17)

with x = |x1 � x2| and �(x) = ⇢(x) � h⇢ix for a fixed
halo at di↵erent redshifts can be seen in the top panel
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r1/2. As can be seen in Fig. 5, the core of the halo is
the only local maximum that is in itself gravitationally
bound and close to virialized. It is therefore a stable ob-
ject whereas the granules have a finite lifetime of order
⌧ = ~/mv

2
vir, as confirmed by the temporal correlation

functions inside and outside of the core discussed below
(cf. Fig. 8).

B. Time evolution
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For comparison with [29], we also define Mc as the mass
enclosed by the radius xc where the peak density drops
by a factor of 1/2 and the density is assumed to follow
a ground-state soliton profile (their Eq. 3). As discussed
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Core oscillations
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Gravitational relaxation from 
wave interference noise

• Wave interference produces white noise with power 

• From simulations, we get

• Gravitational fluctuations produce dynamical  
relaxation on the time scale (El-Zant+ ’16)

• Together, this gives

•  Hui et al. (2017) find

 from 2-body relaxation with granular quasi-particles
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Relaxation time as function of halo mass

I take the expressions for virial radius and virial velocity as func-
tions of virial mass from Frank van den Bosch’s lecture notes:
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Figure 1: Region of parameter space
for which trelax < 1010 yr on scales of
rrelax = 10�2 rvir. The Lyman-a forest
constraints are from (1).

and define the relaxation radius as a fixed fraction of rvir:

rrelax = C rvir .

For Mvir ⇠ 1012M�, C = 10�2 gives rrelax ⇠ 3 kpc.
Solving eq. (2) for m with trelax = 1010 yr, r = rrelax, and v = vvir

gives a constraint on m as a function of Mvir, see fig. 1.

June 5, 2018

FDM relaxation time estimates

In (2, eq. 32), the relaxation time for FDM is estimated as trelax ⇠
0.1tcr M/meff with the crossing time tcr = r/v and the effective
granule mass meff ⇠ r(ldB/2)3. This gives

trelax ⇠ 0.4
frelax

m3v2r4

p3h̄3 . (1)

On the other hand, (3) estimate trelax from the power spectrum of
density fluctuations. Taking r = l ⇠ d/2 and n = 1 in their eq. (24),
we get

trelax ⇠ 1
8phd2i

r
v

⇠ r3

6Pint

r
v

using eq. (3) and Vu = (4p/3)r3. In our case, P0 = Pgran is the white
noise power spectrum from FDM granular structure, Notice that ldB = h/mv, not h̄/mv!
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,

where fint < 1 can be measured from simulations. This gives First estimates indicate fint ⇠ 0.5.
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which is about a factor of 1/2 smaller than eq. (1).

June 4, 2018

White noise power spectra

Let’s use the notation of (4, eq. 4.256) for the power spectrum: Peacock (5, eq. 16.10) defines P(k)
without V.

P(k) = Vu h|dk|2i = Vu hdkd�ki , (3)

where Vu is the volume of a large box with periodic boundary
conditions and

dk =
1

Vu

Z
d(x) exp(�ikx) d3x .

The dimensionless power spectrum is defined as (4, eq. 4.268)

D2(k) =
k3

2p2 P(k) .

If we have density perturbations dk of order unity (shot noise) on
a scale l0 that are uncorrelated on larger scales, See (6) who define this in terms of

mass M(k), and Julia’s thesis eq. (5.13).
I understand this in terms of Poisson
noise, where each volume V(k0)
corresponds to a binary "event".

dk =

✓
dr

r̄

◆

k
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V(k0)
V(k)

◆1/2

=

✓
l0
l

◆3/2

=

✓
k
k0

◆3/2
.

Then P(k = 2p/l) is constant white noise: (7) use P0 = 1/n, where n is the
number density of miniclusters,
corresponding to d = N�1/2.

P0 =

✓
2p

k

◆3
d2

k =

✓
2p

k0

◆3

and

D2(k) = 4p

✓
k
k0

◆3
.
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Gravitational relaxation from 
wave interference noise

Dynamical relaxation from wave noise may be relevant 
for dwarf cores, independent of the solitonic core itself.

(Iršič+ ’17; Armengaud+ ’17)



Formation of QCD axion miniclusters
Simple estimates of power spectrum and HMF:

Simulations:

N-body simulations of 
nonlinear density 
perturbations during 
radiation-dominated 
epoch:

– Initial conditions from 
simulations of complex 
axion field (Redondo, 
Vaquero, Stadler)

– Questions: minicluster 
mass function, total 
mass bound in 
miniclusters, … 

– Paper: coming soon… 

Wiebe, Redondo, JN+ , in preparation
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Summary
• The confrontation of ΛCDM (+ inflation) predictions for small-scale structure with 

observations  provides ongoing motivation for studying physics beyond CDM

• Prominent classes of modifications predict suppression of small-scale power 
(WDM-like), enhanced transport effects (SIDM-like), and the production of 
compact objects (PBH-like)

• Axion cosmology has a little bit of all:
– Primordial suppression of high-k power (ultralight axions)

probes: Lyman-alpha forest, high-z luminosity functions, 
reionization, galactic streams, substructure lensing,…

– Dynamical enhancement of gravitational relaxation
probes: morphology of inner parts of disk galaxies, orbital 
stability of SMBHs and globular clusters (Hui+ ’17) 

– Production of axion miniclusters / axion stars / solitonic 
cores

probes (QCD axion miniclusters and axion stars): micro-, nano-, 
pico-, femto-, attolensing; non-gravitational probes 
probes (FDM cores): dwarf galaxy rotation curves, core 
oscillations? 


