EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

A bright gamma ray source by inverse Compton scattering (WP7)

Christopher Murphy (York) And all in WP7

27th February 2019

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

- We have seen a coherent and ultra-short but broadband radiation source at 5-20 keV photon energy
- What about MeV?
 - Introduces applications in highly penetrative radiography
- What about mono-energetic?
 - Precision nuclear physics

• An *inverse Compton* user area has been proposed

Inverse Compton Scattering

E^[•]**PRA**[×]IA

- Laser light scatters from relativistic electrons and experiences a relativistic
 Doppler upshift
- Scattered light can be monoenergetic if:
 - Electrons (and laser) are monoenergetic
 - Compton is in the linear regime

Horizon 2020

Inverse Compton Scattering

- Accessible Parameters:
 - Micron source size: electron beam or laser spot
 - Tunable narrowband: 1 600 MeV from 0.2 – 5 GeV e⁻ (linear)
 - Brighter broadband: up to GeV (nonlinear)
- Flux increases with laser intensity
- Average photon energy is 0.44 χ E_e
- Broadband approaches a synchrotron spectrum for high χ

Eupra Baseline design functional layout : INFN

- Can be very compact:
 - Short focal length for small source and high brightness
 - Photon energy is unlikely to need to be in vacuum
 - For absorption imaging and NRF, no drift distance required

- Several experiments by various groups (QUB, Nebraska, LBNL etc...) with publications to help inform direction
- Upcoming experiments to look at
 - stability, flux and experimental source size
 - detectors able to fully exploit beam parameters