100 Hz pumping options for EuPRAXIA Project

Status Talk

Marko Hübner, Paul Crump Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) Berlin, Germany Grainau, 26. February 2019

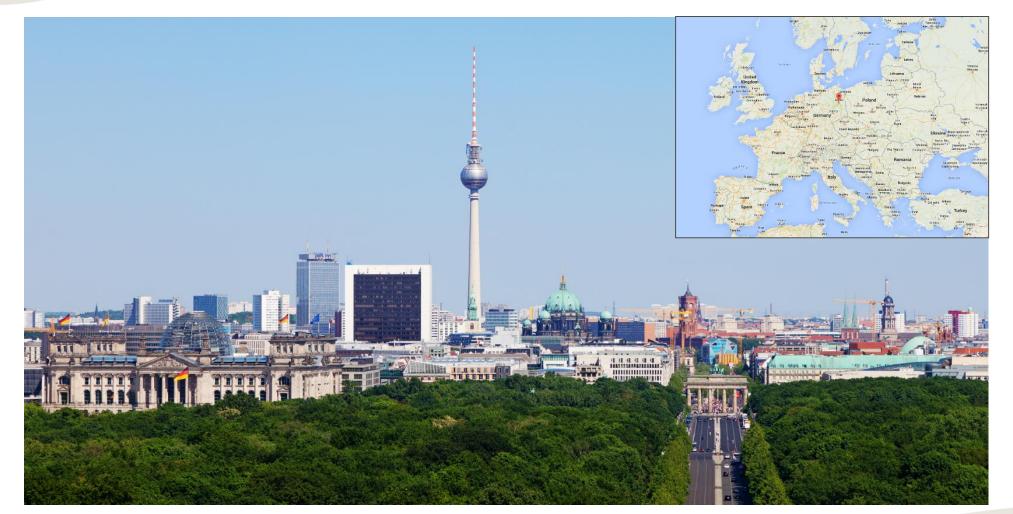
Brief introduction to FBH

Requirements for 100 Hz pumps for EuPRAXIA

Technology status of high repetition rate, high intensity pump sources

Proposed path to pump availability

Brief introduction to FBH


Requirements for 100 Hz pumps for EuPRAXIA

Technology status of high repetition rate, high intensity pump sources

Proposed path to pump availability

Introduction to the Ferdinand-Braun-Institut (FBH) ... Innovations with microwaves & light

The FBH is situated in the south-east of Berlin, Germany

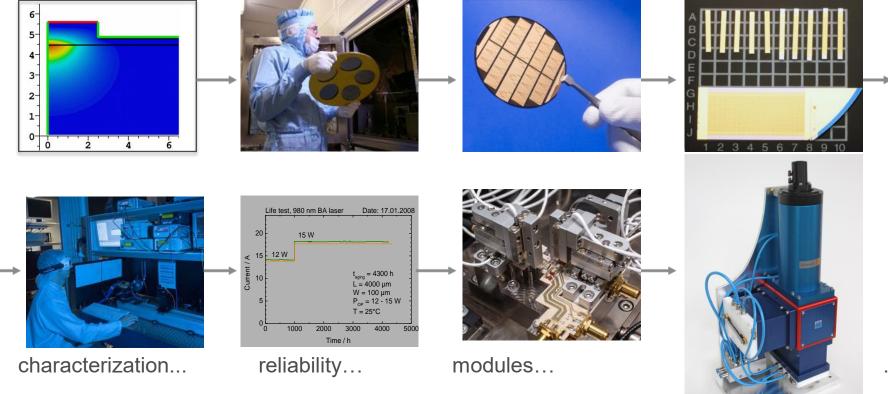
In Adlershof, Germany's leading science and technology park

Ferdinand-Braun-Institut – Facts & Figures

- Institute within Forschungsverbund Berlin e.V., Member of Leibniz Association
- Shareholders: State of Berlin / Federal Republic of Germany
- Founded in: 1992
- Staff: 290 (incl. 150 scientists & PhD students)
- Budget / Turnover (2017): 33 M€ (incl. 16 M€ project revenues)
- Partner with / Joint Labs:
 - Technische Universität Berlin
 - Humboldt-Universität zu Berlin
 - Goethe-Universität Frankfurt a. M.
 - BTU Cottbus-Senftenberg
- Associate member of EuPRAXIA

Applied Research into High Power Diode Lasers for Pump Applications:

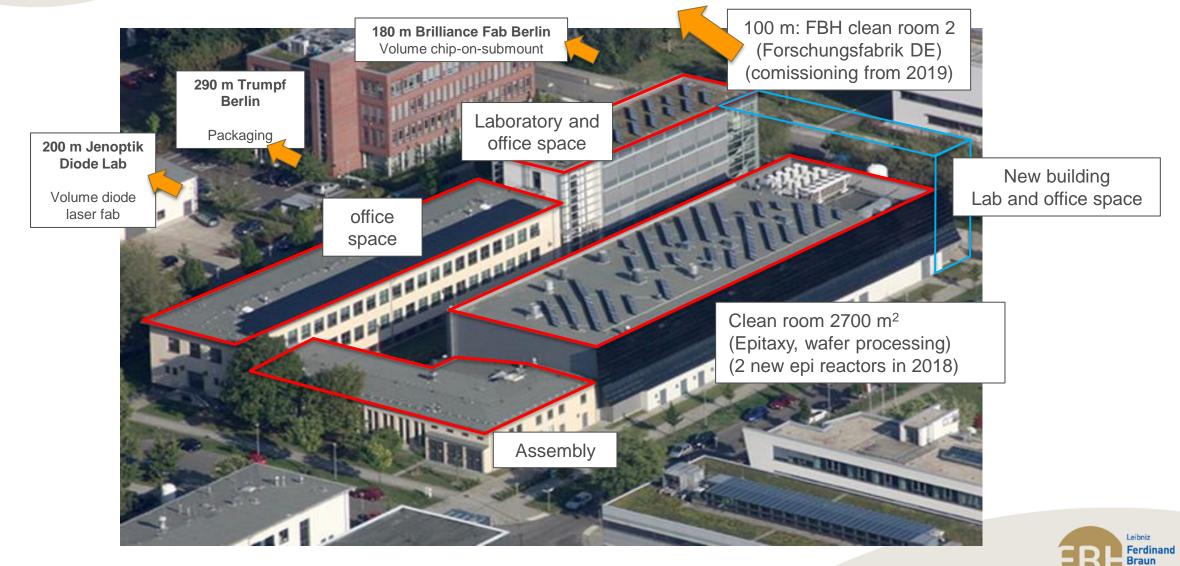
The FBH: leader in applied research into high power diode laser pumps


- Leader in (e.g.) diode laser bar power (kW bars) and efficiency (70% peak, > 60% at 1 kW)
 - Patent portfolio covering III-V design and technology
- Close cooperation with industry, from R&D prototyping to pilot-series fabrication to tech transfer
 - Including Trumpf, Jenoptik, OSRAM, DILAS/Coherent, Lastronics
- Close cooperation with sold state laser research facilities
 - MBI, IOQ (Uni. Jena), STFC, HILASE, Livermore

Applied Research into High Power Diode Lasers for Pump Applications:

The FBH covers the complete value chain, from ...

design...


epitaxy & technology...

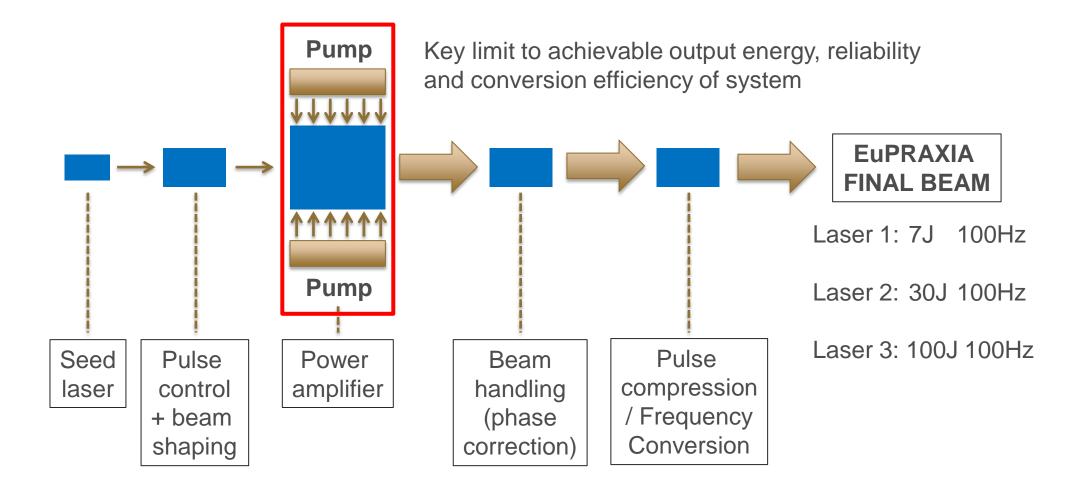
...to demonstrator

systems.

FBH main building, facility, collaborators

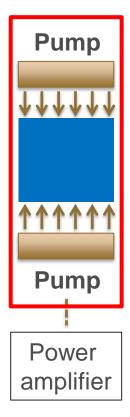
Institut

Brief introduction to FBH


Requirements for 100 Hz pumps for EuPRAXIA

Technology status of high repetition rate, high intensity pump sources

Proposed path to pump availability



EuPRAXIA 100 Hz Schematic Configuration

EuPRAXIA 100 Hz Pump Requirements

Estimate of requirements shown (with thanks to STFC for input)

- Assuming on TiSa system pumped using DPSSL cryo Yb:YAG (Yb:CaF₂, Tm:YAG are alternatives)
 Laser 3: 100 J 100 Hz
- 1200 W peak pump power (Two pump units, 600 kW each)
- Pulse condition: 0.5...1 ms 100 Hz,
- Beam: 3.6...7 J/cm2 & 0.5...1 MW/(cm2-sr)

Laser 2: 30 J 100 Hz

As for 100J, but ~ 360 W total peak pump power (linear scaling)

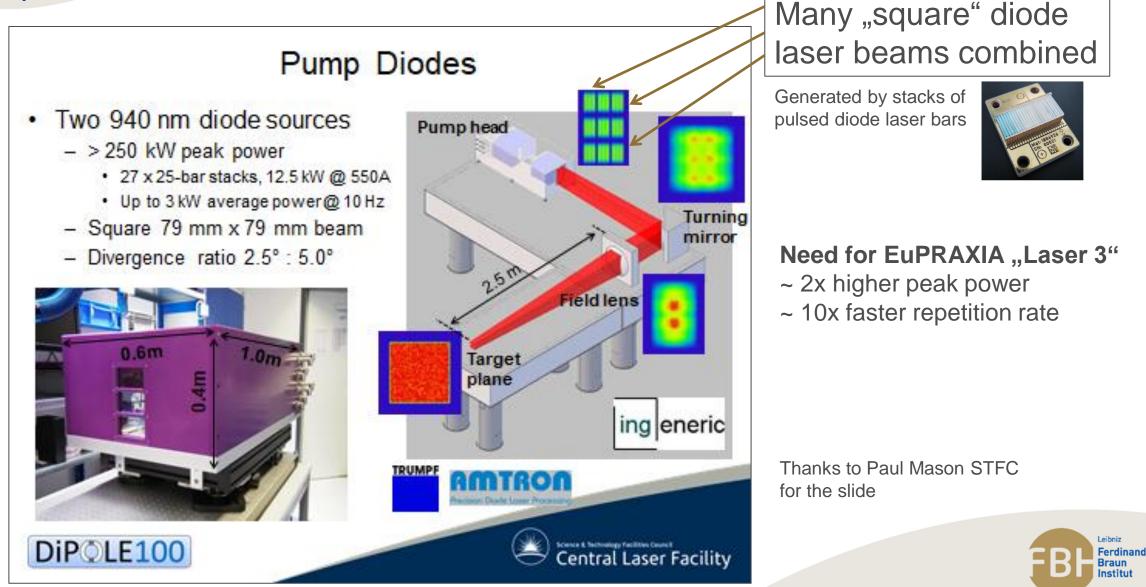
Laser 1:7 J 100 Hz

As for 100J, but ~ 84 W total peak pump power (linear scaling)

Reliability:

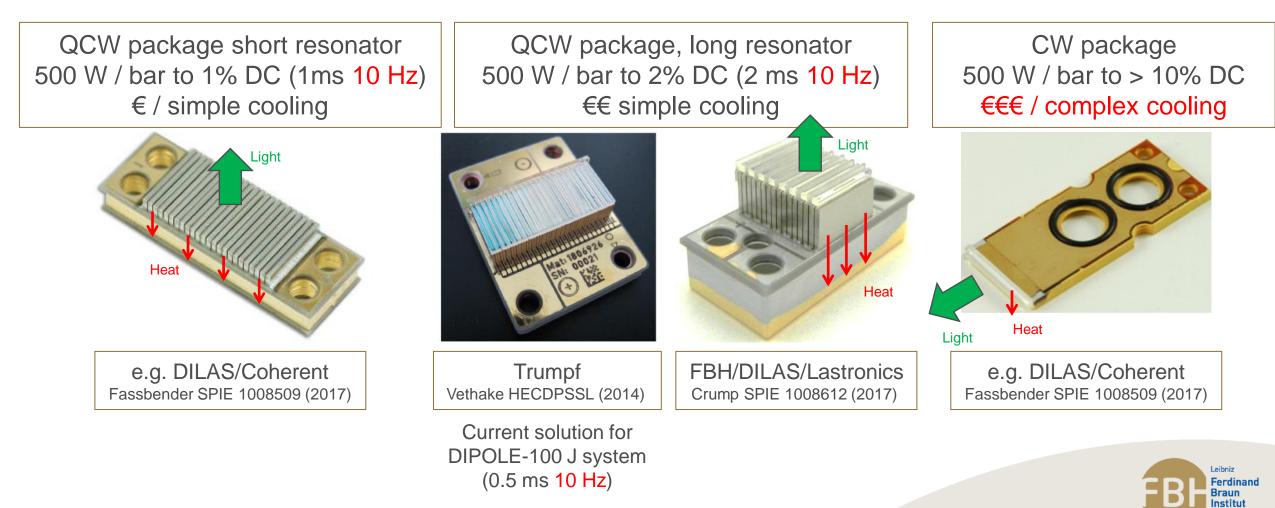
- 24/7 operation for 25...30 years, 100 Hz 0.5 ms (~ 100 e9 "shots")
- "Acceptable" reliability / diode laser replacement rate. To be defined!

Brief introduction to FBH

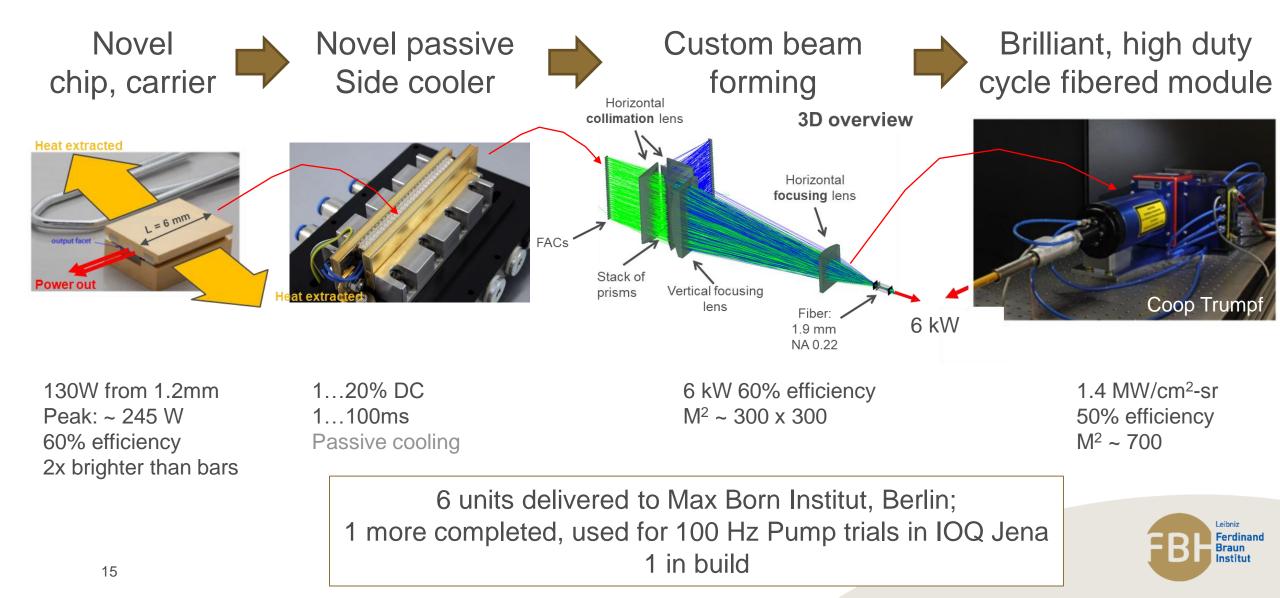

Requirements for 100 Hz pumps for EuPRAXIA

Technology status of high repetition rate, high intensity pump sources

Proposed path to pump availability

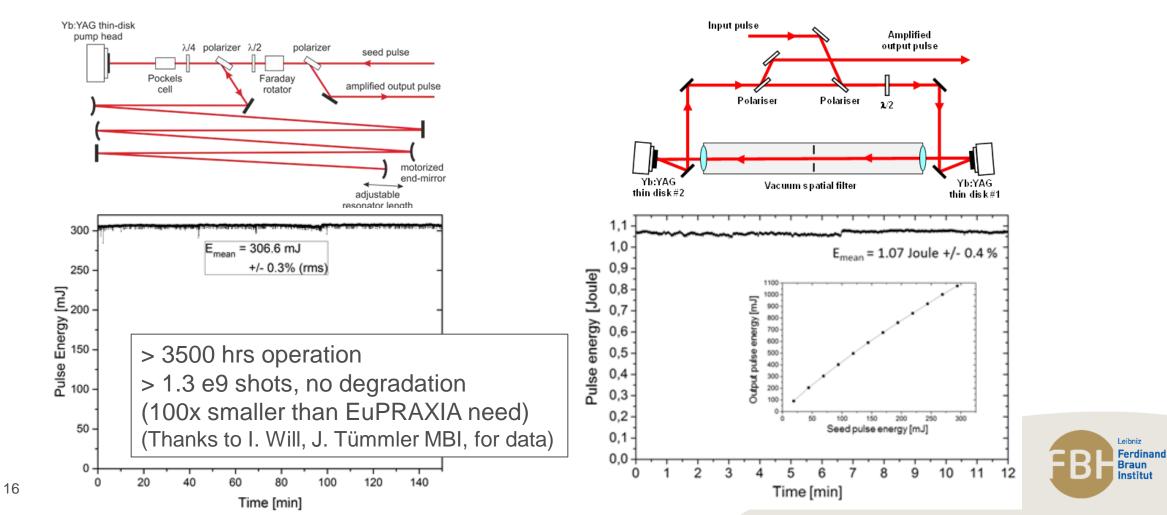


Pump units for DIPOLE100, > 250 kW, 10 Hz



Challenge 1 for EuPRAXIA: economic pump diode packaging can't do 100 Hz

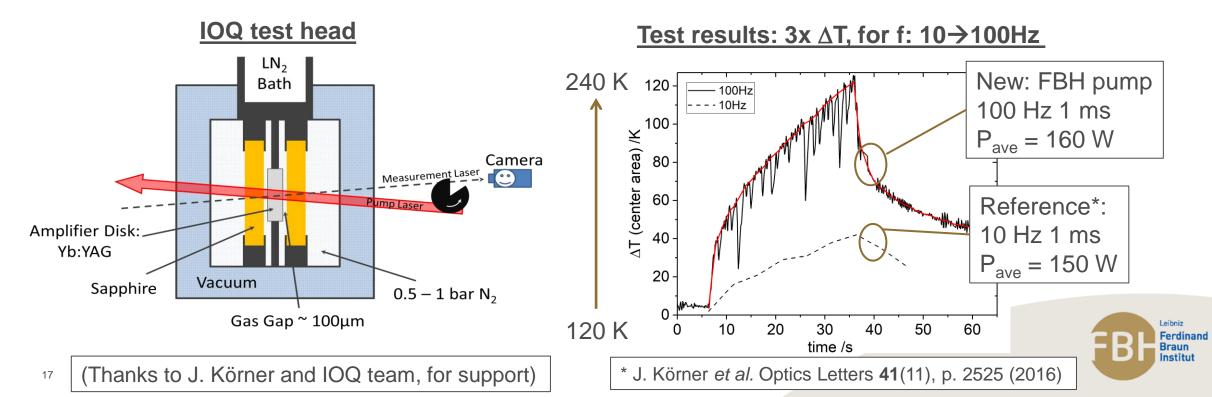
Challenge: "off the shelf" commercial diode laser pumps show performance gap



Possible solution: FBH brilliant high duty cycle pump: small-series prototype

FBH brilliant high duty cycle pump in regular use at Max Born Institut, Berlin

Application 1: 300mJ 100 Hz regenerative amplifier Application 2: 1 J 100 Hz ring amplifier


Challenge 2 for EuPRAXIA: advances in amplifier cooling needed for 100 Hz

Few studies on 100 Hz pumping! So, trials performed late 2018, FBH + IOQ FSU Jena, Germany

- FBH pump: Operated 0.8 MW/cm²-sr, 1 ms 100 Hz, 160 W average power, $\lambda_{pump} = 940$ nm
- IOQ Amplifier: Static, face cooled cryogenic Yb:YAG (Yb doping with 3 at.-%), no seed laser, so extreme case!

Result: $\Delta T: 40 \rightarrow 120$ K, for f: 10 $\rightarrow 100$ Hz, for same average power!!

More sophisticated cooling, further analysis needed (submission to EuPRAXIA special issue shortly)

Brief introduction to FBH

Requirements for 100 Hz pumps for EuPRAXIA

Technology status of high repetition rate, high intensity pump sources

Proposed path to pump availability

Key challenges for implementation

Diode laser pumps needed for EuPRAXIA do not exist – but generate (all) the photons in the system

Performance window well outside normal specs, exact requirement unclear (really 1600 kW needed?)

Design of amplifier head needs further study – non-linear heating processes, need to be understood

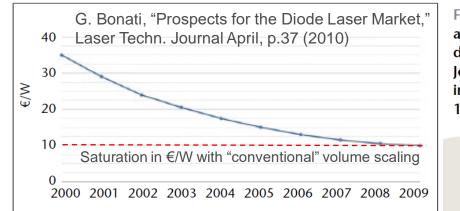
Overheating observed at 100 Hz, best choice of gain media, pump wavelength, cooling scheme unclear

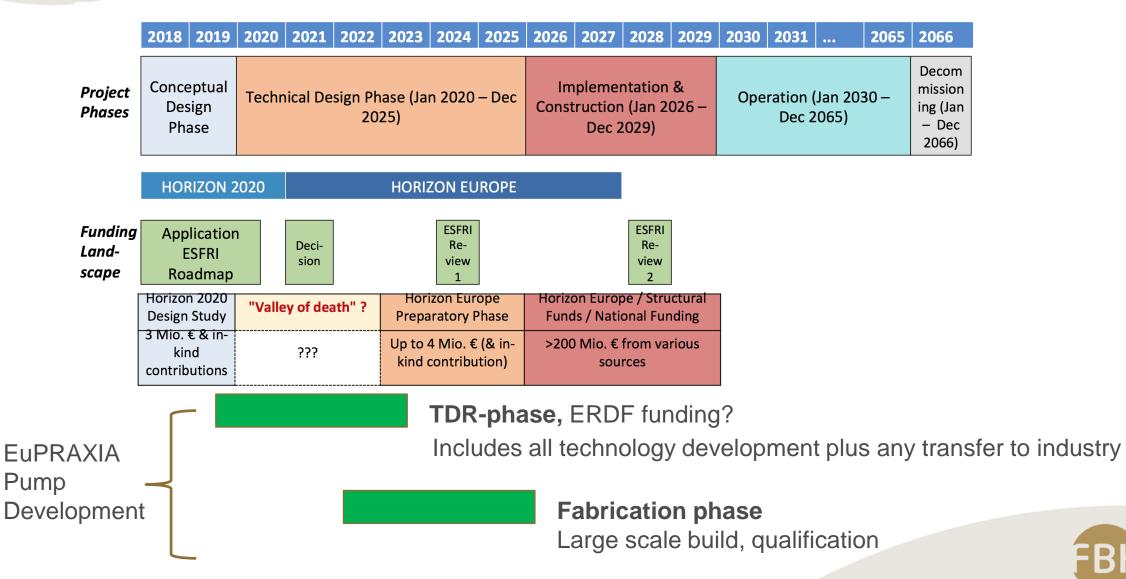
High fabrication costs must be budgeted for; estimate 16 Mio€ purchase just for the pumps!

- ~ 17 €/W: Approx. cost of low-volume prototype pumps (peak power)
 - Valid for FBH (100 Hz 6 kW) and DIPOLE-100 (10 Hz 250 kW) pump units.
- ~ 10 €/W: approx. estimate of pump cost for final system (see graph from Jenoptik below)
 - Feedback LLNL: broadly comparable with current prices for "high volume" QCW pump purchase
- Simple estimate leads to 16 Mio € just for pumps!
 - 1644 kW total estimated pump power
 - Laser 3 (1200 kW) + 2 (360 kW) + 1 (84 kW)
 - Does not include any needed development cost
 - 10% for development means ~ 1…2 Mio €

Time for development, fabrication needed

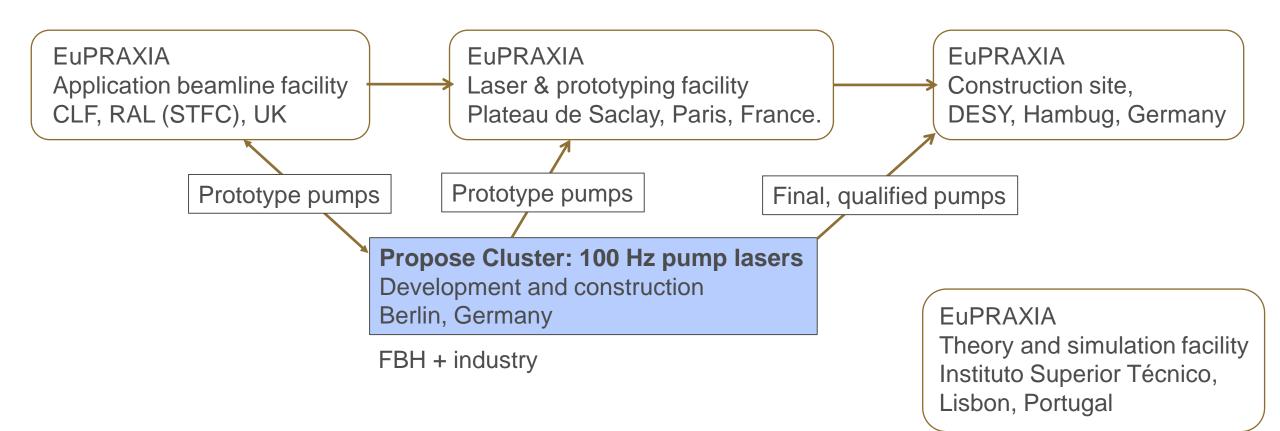
Amplifier teams need prototype pumps early




FIGURE 4: The average price per Watt of diode lasers (sold by Jenoptik) is decreasing at an average of 15 %.

Ferdinand

Braun


Institut

Proposal: Target completing key preparatory tasks in "valley of death" phase

Leibniz Ferdinand Braun Institut

Potential organisation: pump laser cluster

Support on 100 Hz amplifier?

Proposed tasks

TDR / prototyping (2019-2023), easily > 1 Mio €

Proposed to include:

- Small scale trials of alternative wavelengths (e.g. 780 nm, 979 nm), but expect 940 nm
 - Efficient, economic delivery of "excess" material from existing programs
- Development of 100 Hz pump head
 - Including margin for technology development and scaling efforts
 - Including build of 100 Hz demonstrators, e.g. full spec Laser 1 pump units (25...40 kW)
 - Including start of material fabrication for system
 - Including necessary qualification (reliability engineering) efforts
- Start 100 Hz pumping trials as early as possible
 - Enable amplifier design to be developed and enhanced
- Implement any needed technology transfer
- Collaboration with industry to define cost, timeline, spec, technology, warranty for full system

Construction (2023-2026), easily 16 Mio €

Proposed to include:

Build of all pump units for LASERS 1...3 (ca. 1600 kW pump power), targeting at 10 € / W

Rough exemplary timeline

		Fabrication		
			Pump	
	Year	Diode	head	Notes
	2018			
	2019			
"Valley of Death" -	2020			Delivery 1: 1x 780 nm 1x 980nm
Phase!!	2021			600 kW Diode laser fab starts
	2022			Delivery 2: 25kW 100 Hz
	2023			Pump unit fab
	2024			Pump unit fab
	2025			Delivery 3: 2 x 600kW 100 Hz
	2026			

Diode laser fabrication time:

Roughly one wafer process batch per month, spread over 3 years

Use of regional EU funds (for example) to kick-start early TDR phase Supported by currently available & funded projects

Brief introduction to FBH

Requirements for 100 Hz pumps for EuPRAXIA

Technology status of high repetition rate, high intensity pump sources

Proposed path to pump availability

The FBH and the diode laser pump community in Germany are ideally qualified to support EuPRAXIA

• Long-term, stable industrial-academic partnership to develop and commercialize high intensity pump sources

100 Hz pumps for EuPRAXIA do not exist, either commercially or in research labs

Closest variant: FBH 100 Hz pumps, but 6 kW prototypes, not 600 kW with warranty

100 Hz pumping leads to challenges in amplifier crystals

Non-linear overheating, requires further study to enable re-design, implementation of enhanced technology

Path to pump availability proposed, via introduction of EuPRAXIA pump laser cluster

- Early technology development, qualification and prototype testing in "valley of death" period
 - Goal: seek 1 Mio-€-class funding via ERDF to help make this possible
- Note potential high purchase price of pumps, expected 10€/W leads quickly to 16 Mio€-class pump laser costs
- Plausible, needs confirmation from industry

Thank you for your attention!

Paul Crump paul.crump@fbh-berlin.de; +49 30 6392 3291 www.fbh-berlin.de Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik Grainau, 26 Feb 2019

Appendix: comparison of QCW pumps sources (most recent papers)

		Source	Aperture	Solid	Optical	Brightness B	Repetition	Pulse width	Wave length
			[cm ²]	angle	Power Popt	[MW / cm ² / <u>sr</u>]	rate	[<u>ms</u>]	[nm]
				[<u>sr</u>]	[W]		[Hz]		
Jenoptik 2013	2012	[8], Stack	1.3	0.00120	2200	1.41	10	1	808 / 940
	2013 -	[8], Stack [8], Module	4.0	0.01065	20000	0.47	10	1	940
		FBH, Stack	1.1	0.00131	3600	2.57	100	0.1100 <u>cw</u>	940
		FBH, Module	1.1	0.00131	6000	4.29	100	0.1100 <u>cw</u>	940
Jenoptik 201	2016	[5], 8 <u>bars</u>	1.2	0.00120	512	0.36	1.375 / 3	400 / 50	810
	2010 -	[5], 12 <u>bars</u>	1.3	0.00120	1080	0.68	2	100	810
Jenoptik 207 DILAS 207		[2] ^{con}	1.2	0.00120	4400	3.07	10	1.2	980 (766nm - 1550nm)
	2017 -	[2] ⁱⁿ	1.9	0.00120	1320	0.59	1.375 / 3 / 400	400 / 50 / 0.2	980 (766nm - 1550nm)
		[2], Module	111.6	0.00120	250000	1.86	400	0.2	808
Focuslight	2017 -	[4], 3 <u>bars</u>	0.2	0.00120	700	2.91	50	0.25	808
		[4], 5 bars	0.4	0.00120	1500	3.11	20	0.25	808
FBH/DILAS	2017-	→ [10], 8 bars	1.3	0.00106	260000	3.58	10	1	935
Trumpf 2	2015 -	[11], DiPOLE100	62.4 4.3	0.00381	250000	1.05	10	1	940
	2013	[12], 25 bars	4.3	0.00094	12000	3.07	10	1	938 (880 - 1000nm)

Table excerpted from paper for EuPRAXIA special issue, submitted shortly

