FIRST LOOK AT SVD DATA

RUN77 & RUN78

Giulia Casarosa

Caveat Emptor

- → all plots shown in these slides are PRELIMINARY
- → only a few days between data taking and today (including a NRT → PSA flight, a few hours of sleep, a blocked kekcc account)
- → I will show a few plots, most of them require *more* thinking
- → Calibration of the Reconstruction (CoG, clusterizer) not done yet
- → please, handle with care

Outline

- **Mate 1** Data & Software Tools
- **Occupancy**
- Cluster size, SNR, time, ...

Data & Tools

Message ID: 514	4 Entry time: 2018/02/15 Thu 15:15 UTC		
JSTTime:		2018/02/16 00:15 JST	
Author:		Giulia Casarosa	
Type:		Cosmic Ray Run	
Category:		General	
Subject:		run 78: PXD+SVD+CDC+TOP+TRG+HLT	

Datasets

runs	# events	magnet	sub-det	trigger	ZS	latency
77	270567		ICDC TOP I	ECL + seed/ CDC + SNR 1Hz rnd = 3		158
78	282698	on				159

TDC = timing_counter(received trigger signal) - timing_counter(wire hit)

5

Reconstruction Tools

- **→** Hot Strips Filter → merged to master
 - a strip is marked as HOT if only one of the 6 samples has an amplitude that exceeds 3 times the noise of that strip (measured in local run)
- **SVD ROI Finder** → merge to master?
 - generates ROIs extrapolating CDC tracks to SVD sensors

6

Event-by-Event Strip Classification

Reconstructed Strips

Occupancy VS Zero Suppression

- → On FADC boards we select only strips that pass the Zero Suppression cut
- ⇒ Zero Suppression cut: (max signal of the 6 samples) / (strip noise) > 3
- ⇒ Expected beam-background occupancy at full luminosity ~ 1.5% on layer 3
- → Occupancy from noise must be negligible, at least one order of magnitude smaller.

Occupancy & Hot Strips

Occupancy (L5, sensor2, V side)

- → Zero Suppression cut is quite low (SNR=3)
- → average occupancy = 1%, in agreement with expectations (see backup)

Occupancy (L5, sensor2,U side)

check compare_occupancy_run78.pdf, e.g.:

300

500

200

- layer4, sensor2, both sides
- later5, all sensors, U side

100

10⁻⁷

- layer6, sensor2, both sides
- layer 6, all sensors, U side

Residuals of Good Strips

U intercept (cm) vs U digit (cm) 5_1_2

Cluster SNR vs Cluster Size, Good Strips

- → Clusters generated by cosmics are different than the ones expected with collisions, at least for the U/P side
- → Cluster Size = I, most probable SNR < 10, probably not generated by particles
- → Cluster Size > 1, SNR around 20 (U/P), 30 (V/N), as expected

Cluster SNR vs Cluster Size, Noise Strips

- → wait, noisy strip clusters?? Maybe a common mode effect, under investigation.
- → Cluster Size = I, most probable SNR < 10</p>
- → Cluster Size > I, SNR increasing, due to nearby noisy strips. See occupancy plots.
- → SNR < 20

Cluster Time, Good Strips

- → CoG is not calibrated yet, differences between U and V cluster times should disappear
- → RMS order of 10 ns, includes contribution of trigger jitter! CoG applies a factor of around 13/18 = 0.7, and RMS is reduced.

Cluster Time, run77 vs run78

Cluster Time, rest V/N

- → CoG calibration depends on the latency
- → average of run78 differs from the average run 77 by 22 ns (less than one clock = 31 ns), compatible with the aforementioned factor = 0.7

SVD Efficiency Measurement

- → What is the inefficiency introduced by a non optimal latency or a "too high" trigger rate? (we're taking dedicated runs to investigate this possible issue)
- ➡ Estimate the relative efficiency of two configurations: count the number of empty ROIs in both runs
 - assuming that each ROI contains at least one good strip
 - assuming that the ROI-Finding efficiency is independent of the latency (true)
 - normalize to the number of events in the run
 - take the ratio of empty ROIs in the two configurations
- → A preliminary estimation indicates that there are no big differences in efficiency between the two latency configurations. The numbers need to be confirmed before being quoted.
- → Plan for the next days:
 - 1. move the SVD ROI Finder in a clean branch (from the master)
 - 2. debug the algorithm
 - 3. merge with master, and maybe include it in release-01-02

Conclusions

- → This is just the beginning, a lot to study and to understand with cosmics:
 - characteristics of noise (occupancy, ZS, time structure, ...)
 - impact of latency configuration and trigger rate on the SVD efficiency, using ROIs
 - CoG calibration, using ROIs
- → Next steps:
 - improved CoG calibration (T0 estimation + strips related to tracks)
 - Clusterizer calibration (clusters related to tracks)
 - SVD Efficiency: we would like to use CKF, but we would need to exclude one layer from the tracking, is it possible?
 - note: currently there is a cut on time in the SpacePointCreator that prevents to use SVD clusters for tracking.
- → We may soon need some help with:
 - CDC T0 estimation
 - CKF

SVD ROI Finding

- → In order to select the strips actually crossed by a cosmic, an SVD ROI Finder module has been written
- → The idea is the same of the PXD ROI Finder module:
 - 1. takes CDC tracks
 - 2. extrapolates towards SVD sensors and find the intercept with the sensor plane
 - 3. defines a rectangular region around the intercept
 - 4. overlaps this region with the sensor, translating the ROI in min and max U/V strips

Gaussian Noise (w/o Shaper!)

Consider the system at times when no detector signal is present.

Noise will be superimposed on the baseline.

The amplitude distribution of the noise is gaussian.

http://www-physics.lbl.gov/~spieler/physics_198_notes/PDF/VIII-6-rate.pdf

Gaussian Noise with a Shaper

- → ...but: the pulse shaper broadens each noise impulse → the time dependence is equally important!
 - For example, after a noise pulse has crossed the threshold, a subsequent pulse will not be recorded if it occurs before the trailing edge of the first pulse has dropped below threshold.
- → The combined probability function for gaussian time and amplitude distributions yields the expression for the noise rate as a function of threshold-to-noise ratio:

$$f_n = f_{n0} \cdot e^{-Q_T^2/2Q_n^2}$$

APV25 ($\tau = 50 \text{ ns}$, $\Delta t = 6 \times 3 \cdot 1.44 \text{ ns} = 189 \text{ ns}$) with ZS $Q_T/Q_n = 3$

noise rate:

$$f_n = f_{n0} \cdot e^{-Q_T^2/2Q_n^2} = 53 \text{ kHz}$$
 $P_n = \Delta t \cdot f_n = 1\%$

occupancy:

$$P_n = \Delta t \cdot f_n = 1\%$$

in agreement with what observed!

http://www-physics.lbl.gov/~spieler/physics 198 notes/PDF/VIII-6-rate.pdf

Latency Study for the Good Strips

bin containing the max of the sampled Amplitude - U side

bin containing the max of the sampled Amplitude - V side

- → A latency of 159 (run78) is the optimal one
- → The width of the histograms is compatible with the T0 jitter of 18 ns

runs	latency
77	158
78	159

Latency Study for the Noise Strips

- → Noisy strips show a flat distribution, as expected
- \Rightarrow Similar structure for run77 and 78 \rightarrow indication of the source of noise?

Cluster Time, Noisy Strips

- → flat distribution: is expected hot strips are not synchronised with the trigger
- → right tail is due to the CoG bias

Occupancy VS Zero Suppression

➡ Before setting a ZS, we need to go though all the sensors/sides, eliminate the hot strips from the occupancy evaluation, and then take a decision:

occupancy VS ZS cut (L5, sensor1, V side)

