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Hadrons interact at large momentum transfer

(=short distance) through their quark and gluon

constituents.

Owing to the asymptotic freedom property of QCD,

αs(µ) is small so most hard pp collisions at the LHC

will be described by the interaction of a single quark

or gluon from one of the protons with a single quark

or gluon from the other.

Hence the subject of this school: we study the PDFs

fa(x, µ) which describe the “1-body” probability

densities for a = u, ū, d, d̄, s, s̄, c, c̄, b, b̄, (or γ) with

the spin structure and correlations integrated out.
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The PDFs fa(x, µ) for each flavor a are functions of

two variables:

• x = light-cone momentum fraction

• µ = QCD factorization scale (≈ 1/distance),

typically Q for DIS; ET or ET/2 for inclusive jet

production.

However, the evolution in µ is computable at NLO or

NNLO by the QCD renormalization group DGLAP

equations. Hence the problem of determining the

PDFs reduces to a problem of determining the

x-dependence for each flavor at a chosen small scale

µ0 (e.g. ∼ 1.4GeV).

The PDFs can be extracted from experiment using

the requirement that they must agree with a large

body of data that are dependent on them. These

PDFs are then available for use in predicting

production rates and backgrounds for new

measurements.
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Two points of view

The PDFs are a Necessary Evil — essential

phenomenological tools to make perturbative

calculations of signals and backgrounds at hadron

colliders. It is of essential practical importance to

measure the PDFS in order to make use of data

from the Tevatron and LHC. Along with this comes

the difficult task of assessing the uncertainty range

of the answers obtained.

The PDFs are a Fundamental Measurement — an

opportunity to interplay with knowledge from the

nonperturbative arenas of QCD, e.g.,

• Regge theory

• Lightcone physics

• Lattice gauge

These connections have been too-much neglected in

my opinion.

Even the assumption of independent flavor

distributions might be improved upon.
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The QCD fitting programme (brief version

1. Parametrize the PDFs fa(x, µ0) at a small µ0 by

smooth functions with lots of free parameters.

2. Calculate fa(x, µ) at all µ > µ0 by DGLAP.

3. Calculate χ2 =
∑
i[(datai − theoryi)/errori]

2 to

measure of the quality of fit to a large variety of

experiments.

4. Obtain the best estimate of the true PDFs by

varying the free parameters to minimize χ2.
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Theoretical basis for PDF fitting

• Factorization Theorem – Short distance and long

distance are separable, and PDFs are

“universal,” i.e., process independent.

• Asymptotic Freedom – Hard scattering is weak

at short distance, and hence perturbatively

calculable.

• DGLAP Evolution – Evolution in µ is

perturbatively calculable, so the functions to be

determined depend only on x.
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The PDF fitting Paradigm

1. Parameterize x-dependence of each flavor at

fixed µ0 (= 1.4GeV). Thus fa(x, µ0) depend on

“shape parameters” A1, . . . , AN (N ∼ 25− 30).

Example: current CTEQ gluon form

x g(x, µ0) = a0 x
a1 (1−x)a2 exp(a3

√
x+a4x+a5x

2)

subject to number sum rule and momentum sum

rule constraints.

2. Compute PDFs fa(x, µ) at µ > µ0 by NLO or

NNLO DGLAP.

3. Compute cross sections for DIS(e,µ,ν),

Drell-Yan, Inclusive Jets, W-production,. . . at

NLO or NNLO.

4. Compute χ2 measure of agreement between

predictions and measurements:

χ2 =
∑

i

(
datai − theoryi

errori

)2

with appropriate generalizations to include

published correlated systematic errors in the

experiments, and theoretical “penalties”.
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PDF fitting Paradigm — continued

5. Minimize χ2 with respect to the shape

parameters {Ai} to obtain Best Fit PDFs.

6. The PDF Uncertainty Range is assumed to be

the region in {Ai} space where χ2 is sufficiently

close to the minimum: χ2 < χ2min + ∆χ2.

The proper choice for the “tolerance condition”

∆χ2 is a perennial hot topic for discussion.

Some recent progress on it will be described

later, and at PDF4LHC.

Using the Hessian Method, the uncertainty range

can be represented by 2N alternative PDF sets

which are obtained by displacements from the

minimum point in {Ai} space along each of the

directions that are defined by the eigenvectors of

the Hessian matrix, where the size of each

displacement is determined by ∆χ2.
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PDF fitting Paradigm — continued

7. When large values of ∆χ2 are assumed,

additional conditions are imposed by adding

weights or penalties to χ2 (CTEQ) or adjusting

the lengths eigenvector displacements (MSTW)

to force acceptable fits to each of the data sets

over the entire uncertainty range.

8. The Best Fit, and the Uncertainty Eigenvector

Sets which map out the uncertainty range, are

made available for applications at

http://projects.hepforge.org/lhapdf/

9. Predicted central value for a cross section of

interest is obtained by calculating it using the

Best Fit. The uncertainty range of the prediction

is obtained by the combining predictions made

using the uncertainty sets in quadrature.
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Handling systematic errors

The simplest definition

χ2
0 =

N∑

i=1

(Di − Ti)
2

σ2
i





Di = data
Ti = theory
σi = “expt. error”

is optimal for random Gaussian errors:

Di = Ti+ σiri with P (r) =
e−r

2/2

√
2π

.

With systematic errors,

Di = Ti(A) + αirstat,i+

K∑

k=1

rkβki .

The fitting parameters are A = {Aλ} (theoretical model) and
{rk} (corrections for systematic errors).

Published experimental errors:

• αi is the ‘standard deviation’ of the random uncorrelated
error.

• βki is the ‘standard deviation’ of the kth (completely
correlated!) systematic error on Di.
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To take into account the systematic errors, we define

χ′2(A, rk) =
N∑

i=1

(
Di −

∑
k rkβki − Ti

)2

α2
i

+
∑

k

r2k ,

and minimize with respect to {rk}. The result is

r̂k =
∑

k′

(
a−1
)
kk′
bk′, (systematic shift)

where

akk′ = δkk′ +

N∑

i=1

βkiβk′i

α2
i

bk =

N∑

i=1

βki (Di − Ti)

α2
i

.

The r̂k’s depend on the PDF model parameters A. We can
solve for them explicitly since the dependence is quadratic.

We then minimize the remaining χ2(A) with respect to the
model parameters A = {Aλ}.

• {aλ} determine fi(x,Q2
0).

• {r̂k} are are the optimal “corrections” for systematic
errors; i.e., systematic shifts to be applied to the data
points to bring the data from different experiments into
compatibility, within the framework of the theoretical
model.

• A similar treatment could be used for parametrized
systematic errors in the theory — e.g. from scale choices.
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Kinematic region of ep and µp data

ep→ eX (H1 = ∆, ZEUS = ∇)
µp→ µX (BCDMS= box, NMC = ◦)

Drell-Yan data, neutrino DIS, and Tevatron W and Z

data are also very important for differentiating

among different flavors.

Tevatron inclusive jet data are very important for

constraining the gluon distribution.

HERA II (not yet included in CTEQ fits), more

Tevatron run II, and eventually the LHC will

dramatically extend the range and accuracy.
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Kinematic Map for LHC
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LHC will explore new territory in x and µ (= Q).

DGLAP evolution at large µ should be very reliable,

so the PDFs needed to calculate the production of

new heavy objects are in pretty good shape.

Significant new territory will come into play at small

x when forward Z0 or lower-mass `+`− pairs are

measured.

Large x is important: the difference between central

collisions at x = 0.20 vs. x = 0.28 is the same as the

difference between running LHC at
√
s = 7 vs.√

s = 14TeV!
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At the same time, one of the delights at the LHC is

that it will the allow the study of PDFs at very small

x — where interesting effects like BFKL are

predicted — since the large s allows x1 or x2 to be

very small while M is large enough for a perturbative

calculation to be reliable, in accord with

s = x1 x2M
2.
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Evolutionary influences of quarks

Regions of PDF change >0.2% (solid) or >0.05%

(dotted) produced by a 1% change at Q0 = 1.3GeV

in a narrow band of x:

d̄+ ū uv

• Valence quarks are unimportant at small x as

expected.

• Quark evolution is mostly at constant x, with a

bit of feed-down toward smaller x.
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Evolutionary influences of gluon

Regions of PDF change >0.2% (solid) or >0.05%

(dotted) caused by a 1% change in gluon at

Q0 = 1.3GeV in a narrow band of x:

• Influence of input g(x) spreads in x much more

than quarks.

• Small-x gluon at Q0 = 1.3GeV has little direct

influence

⇒ gluons at moderate and high Q are

radiatively generated.
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PDF results at µ = 2GeV and 100GeV

• Valence quarks dominate for x→ 1

• u > d because Nu = 2, Nd = 1.

• Gluon dominates for x→ 0, especially at large µ.

• ū and d̄ are different — they even cross over.

• u = ū = d = d̄ at x→ 0 is imposed in the

parametrization, but is consistent with the data:

dropping this condition allows very little

reduction in χ2.
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Uncertainty Results (Gluon)

∆χ2 = 100 uncertainty bands. Horizontal axis is x1/3

in order to show a wide range of x.

Vertical axis is weighted by x5/3 to make the area

under the curve proportional to the momentum

fraction carried by gluon. That momentum fraction

is strongly constrained by DIS data, so the envelope

itself is not an allowed PDF — e.g., if g(x) is larger

than the central value at x ≈ 0.5, it will be smaller

than the central value at x ≈ 0.05.

“Convergent evolution”: the uncertainty is much

smaller at µ = 100GeV.

17



Parametrization dependence: Uncertainty
of d(x)/u(x) at large x

Black: CTEQ6.5 central fit

Green: 40 CTEQ6.5 eigenvector uncertainty sets

Red: results from equally-acceptable alternative

parametrizations

In CTEQ6.5, we assumed dv(x) ∼ (1− x)ad and

uv(x) ∼ (1− x)au at x→ 1, with constraint

ad − au = +1. This constraint was imposed (for the

best fit and for all eigenvector sets) because ad − au

is very weakly constrained by χ2 (“flat direction”)

Red dotted curves are fits made with a variety of

choices for ad − au. They are all very good fits, so

the behavior of d/u is completely unconstrained by

the experiments included here for x > 0.8.
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Regge behavior of ū

The Regge behavior x ū(x, µ) ∝ xa1 that we assume

for x→ 0 at µ0 is quite well preserved by DGLAP

evolution. This can be seen by the nearly

straight-line behavior on a log-log plot, with slope

nearly independent of µ:

Red/Green/Blue/Magenta/Black:

µ = 1.3/2.0/3.2/5.0/20GeV.

Numerical value of the slope a1 agrees well with

expectations from Regge, which supports the use of

the x ū(x, µ) ∝ xa1 ansatz.

Regge theory does not provide a useful constraint on

a1, because the uncertainty from PDF fitting is small

compared to the uncertainty of estimates from

strong-interaction phenomenology.
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Regge behavior of uv ≡ u− ū

The Regge behavior xuv(x, µ) ∝ xa1 that we assume

for x→ 0 at µ0 is also well preserved by DGLAP

evolution:

where Red/Green/Blue/Magenta/Black:

µ = 1.3/2.0/3.2/5.0/20GeV.

Again the observed slope value a1 is consistent with

expectations from Regge theory, which supports the

choice of functional form.

Again the uncertainty in a1 from PDF fitting is small

compared to the uncertainty of its estimate based on

Regge theory, so traditional Regge phenomenology

does not provide a useful constraint on a1 to

improve the PDF determination.
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Regge behavior of gluon at small x?

In contrast to valence and sea quark distributions,

the NLO evolution of the gluon distribution at small

x is very rapid. Hence no simple comparison can be

made with expectations from Regge theory:

where Red/Green/Blue/Magenta/Black:

µ = 1.3/2.0/3.2/5.0/20GeV.

This rapid change in slope is related to the rapid

variation of the effective power F2 ∼ xλ(Q
2).

Speculation: perhaps small-x resummation

corrections to DGLAP would restore Regge behavior

for g(x, µ)?
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PDFs with Intrinsic Charm

Green: g, u, d, ū, d̄, s = s̄ CTEQ6.5

Blue: Charm from gluon splitting

Red: Intrinsic Charm using form of Brodsky et al. at

µ0 = 1.3GeV, normalized to probability 0.5%, 1.0%,

1.5%, 2.0%, 2.5% for cc̄.

• Typical estimate 1.0% according to fans of

intrinsic charm; > 2.5% ruled out by Global Fit.

• IC could be “large” (c̄ > ū, d̄) for x > 0.2.
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Uncertainties: Lagrange Multiplier method
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Track χ2 as function of a physical quantity of

interest.

• Easy example: plot χ2 for the global fit as a

function of αs(mZ), to get a measurement of the

strong coupling based on PDF fits.

• LM example: plot χ2 for the global fit as a

function of the predicted tt̄ cross section at LHC,

to get a clean estimate of the PDF uncertainty

in that quantity. The plot can be generated by

minimizing χ2 + λσtt̄ for a series of different

values of the LM parameter λ.

• This method can be used to generate PDF sets

that predict the extreme values of σtt̄, or σW , or

〈y〉 for rapidity distribution of W ; or . . .
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Dependence of fit χ2 on αs(mZ)

Have two different curves because have tried two

different functional forms for αs(µ), which are

identical at NLO. The difference between them is an

unavoidable systematic error.

Minima of χ2 at αs(mZ) = 0.1172 and 0.1176 are

close to the world average.

Choosing an appropriate ∆χ2 tolerance range turns

this into a measurement of αs(mZ). But the

uncertainty of that measurement is larger than the

uncertainty of the world average – which is

dominated by LEP data.
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Uncertainty methods: Hessian
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In the neighborhood of the minimum, χ2 has a

quadratic form

χ2 = χ2min +
∑

ij

Hij (Ai −A
(0)
i ) (Aj −A

(0)
j ) .

It is convenient to put this in a diagonal form by

using the eigenvectors of H:

χ2 = χ2min +
∑

i

z2i

where

Ai = A
(0)
i +

∑

j

wij zj .
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Hessian method – continued

In the Hessian method, χ2 is diagonalized in the

neighborhood of the minimum:

χ2 = χ2min +
∑

i

z2i .

The uncertainty range is then described by PDF

eigenvector sets defined by

(z1, z2, z2, . . .) =





(+T,0,0, . . .)
(−T,0,0, . . .)
(0,+T,0, . . .)
(0,−T,0, . . .)
. . .

.

According to the quadratic approximation,

T =
√
∆χ2. In practice, T is adjusted separately for

each eigenvector set to produce the desired ∆χ2.
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Hessian method – continued

The 2N PDF eigenvector sets can be used to

compute the PDF uncertainty for any prediction F .

A symmetric form for the uncertainty is given by

∆F =
1

2

√√√√∑

i

(
F (S

(+)
i ) − F (S

(−)
i )

)2

where S
(+)
i and S

(−)
i are the PDF sets that are

displaced along the eigenvector direction i. A more

accurate method is to compute asymmetric limits:

∆F =

√√√√
∑

i,±

(
F (S

(±)
i ) − F (BestFit)

)2

where the sum includes only positive displacements

to calculate the upper limit of F and only negative

displacements for the lower limit.

Parton distributions published by the CTEQ group

have ∆χ2 chosen to estimate 90% confidence limits.

This is done because non-quadratic behavior of χ2

associated with “flat” directions causes the 90%

confidence limits to not be as broad as one would

estimated by multiplying the traditional 68.2%

(“1σ”) limits by the factor 1.64 that would be

predicted by standard Gaussian statistics.
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Iterative technique in the Hessian method

In the quadratic approximation (Taylor series to

second order),

χ2 = χ2min +
∑

ij

Hij (Ai −A
(0)
i ) (Aj −A

(0)
j )

where

Hij =
∂2 χ2

∂Ai ∂Aj
.

Formally, this can be put into a diagonal form

χ2 = χ2min +
∑

i

z2i

by a linear transformation

Ai = A
(0)
i +

∑

j

wij zj ,

where the transformation matrix w is constructed

from the eigenvectors of H.
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Iterative technique – continued

In practice, it is not so simple to obtain

χ2 = χ2min +
∑

i

z2i ,

because the curvature of χ2 as a function of the

displacement from the minimum in the space of

fitting parameters

D =

√∑

i

(Ai −A
(0)
i )2

varies over orders of magnitude among different

directions. This causes non-quadratic behavior of χ2

to spoil the simple calculation of H by finite

differences.

This difficulty is overcome by an iterative method in

which new coordinates obtained using the

eigenvectors of the Hessian are treated as old ones

and the method is repeated until it converges. By

the end of the iteration, χ2 is probed in all directions

at the appropriate scale of ∆χ2.
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Measuring internal consistency of the fit

Partition the data into two subsets:

χ2 = χ2S + χ2
S

where subset S can, for example, be chosen as

• any single experiment

• all of the jet experiments

• all of the low-Q data points (to look for higher

twist)

• all of the low-x data points (to look for BFKL)

• all experiments with deuteron corrections

• all of the neutrino experiments (to look for

nuclear corrections)

A method I call Data Set Diagonalization which was

first proposed in my HERA/LHC talk (March 2004)

directly answers the questions

1. What does subset S measure?

2. Is subset S consistent with the rest of the data?
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Data Set Diagonalization

The DSD method is an extension of the Hessian

method. It works by transforming the contributions

χ2S and χ2
S
to χ2 into a form where they can be

interpreted as independent measurements of N

quantities.

The essential point is that the linear transformation

that leads to

χ2 = χ20 +
N∑

i=1

z 2i

is not unique, because any further orthogonal

transform of the zi will preserve it. Such an

orthogonal transformation can be defined using the

eigenvectors of any symmetric matrix. After this

second linear transformation of the coordinates, the

chosen symmetric matrix will then be diagonal in the

resulting new coordinates.

This freedom is exploited in the DSD method by

taking the symmetric matrix from the quadratic form

that describes the contribution to χ2 from the subset

S of the data that is chosen for study. Then . . .
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DSD method – continued

χ2 = χ2S + χ2S̄ + const

χ2S =
N∑

i=1

[(zi −Ai)/Bi]
2

χ2S̄ =
N∑

i=1

[(zi − Ci)/Di]
2

This decomposition answers the question “What is

measured by data subset S?” — it is those

parameters zi for which the Bi ∼< Di. The fraction of

the measurement of zi contributed by S is

γi =
D 2
i

B 2
i + D 2

i

.

The decomposition also measures the compatibility

between S and the rest of the data S: the

disagreement between the two is

σi =
|Ai − Ci|√
(B 2

i + C 2
i )

.

32



Experiments that provide at least one
measurement with γi > 0.1

Process Expt N
∑

i
γi

e+ p→ e+X H1 NC 115 2.10

e− p→ e−X H1 NC 126 0.30
e+ p→ e+X H1 NC 147 0.37
e+ p→ e+X H1 CC 25 0.24
e− p→ ν X H1 CC 28 0.13

e+ p→ e+X ZEUS NC 227 1.69

e+ p→ e+X ZEUS NC 90 0.36
e+ p→ ν X ZEUS CC 29 0.55
e+ p→ ν̄ X ZEUS CC 30 0.32
e− p→ ν X ZEUS CC 26 0.12

µ p→ µX BCDMS F2p 339 2.21

µd→ µX BCDMS F2d 251 0.90
µ p→ µX NMC F2p 201 0.49

µ p/d→ µX NMC F2p/d 123 2.17

pCu→ µ+µ−X E605 119 1.52

pp, pd→ µ+µ−X E866 pp/pd 15 1.92
pp→ µ+µ−X E866 pp 184 1.52

p̄p→ (W→ `ν)X CDF I Wasy 11 0.91

p̄p→ (W→ `ν)X CDF II Wasy 11 0.16
p̄ p→ jetX CDF II Jet 72 0.92
p̄ p→ jetX D0 II Jet 110 0.68

ν Fe→ µX NuTeV F2 69 0.84

ν Fe→ µX NuTeV F3 86 0.61
ν Fe→ µX CDHSW 96 0.13
ν Fe→ µX CDHSW 85 0.11

ν Fe→ µ+µ−X NuTeV 38 0.68
ν̄ Fe→ µ+µ−X NuTeV 33 0.56
ν Fe→ µ+µ−X CCFR 40 0.41
ν̄ Fe→ µ+µ−X CCFR 38 0.14

Total of
∑

γi = 23 is close to actual number of fit parameters.

H1+ZEUS measure 6.2 of the parameters — fewer than in HERA-only fits
as expected.
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Consistency tests: measurements that
conflict strongly with the other experiments

(σi > 3) are shown in red.

Expt
∑

i
γi (γ1, σ1), (γ2, σ2), . . .

H1 NC 2.10 (0.72, 0.01) (0.59, 3.02) (0.43, 0.20) (0.36, 1.37)

H1 NC 0.30 (0.30, 0.02)
H1 NC 0.37 (0.21, 0.06) (0.16, 0.83)
H1 CC 0.24 (0.24, 0.00)
H1 CC 0.13 (0.13, 0.00)

ZEUS NC 1.69 (0.45,3.13) (0.42, 0.32) (0.35,3.20) (0.29, 0.80)

(0.18, 0.64)
ZEUS NC 0.36 (0.22, 0.01) (0.14, 1.61)
ZEUS CC 0.55 (0.55, 0.04)
ZEUS CC 0.32 (0.32, 0.10)
ZEUS CC 0.12 (0.12, 0.02)

BCDMS F2p 2.21 (0.68, 0.50) (0.63, 1.63) (0.43, 0.80) (0.34,4.93)

(0.13, 0.94)
BCDMS F2d 0.90 (0.32, 0.67) (0.24, 2.49) (0.19, 2.09) (0.16,5.22)

NMC F2p 0.49 (0.20,4.56) (0.17,4.76) (0.12, 0.50)
NMC F2p/d 2.17 (0.61, 1.11) (0.56,3.60) (0.43, 0.90) (0.36, 0.79)

(0.21, 1.41)

E605 DY 1.52 (0.91, 1.29) (0.38, 1.12) (0.23, 0.31)

E866 pp/pd 1.92 (0.88, 0.57) (0.69, 1.15) (0.35, 1.80)
E866 pp 1.52 (0.75, 0.04) (0.39, 1.79) (0.23, 1.94) (0.14,3.57)

CDF Wasy 0.91 (0.57, 0.33) (0.34, 0.51)

CDF Wasy 0.16 (0.16, 2.84)
CDF Jet 0.92 (0.48, 0.47) (0.44,3.86)
D0 Jet 0.68 (0.39, 1.70) (0.29, 0.76)

NuTeV F2 0.84 (0.37, 2.75) (0.29, 0.42) (0.18, 0.97)

NuTeV F3 0.61 (0.30, 0.50) (0.16, 1.35) (0.15, 0.30)
CDHSW 0.13 (0.13, 0.04)
CDHSW 0.11 (0.11, 1.32)
NuTeV 0.68 (0.39, 0.31) (0.29, 0.66)
NuTeV 0.56 (0.32, 0.18) (0.24, 2.56)
CCFR 0.41 (0.24, 1.37) (0.17, 0.12)
CCFR 0.14 (0.14, 0.79)
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Measurements in a recent PDF fit

Figure showing the results in the table.

ep (daisy);

µp, µd (◦);
pp, pd, pCu (box);

p̄p (∇);

νA (∆).
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Consistency of measurements in a global fit

Histogram of the consistency measure σi for the 68

significant (γi > 0.1) measurements provided by the

37 experiments in a typical global fit.

Solid curve is the absolute Gaussian prediction

dP

dσ
=

√
2

π
exp(−σ2/2) .

Dashed curve is a scaled Gaussian with c = 1.9 :

dP

dσ
=

√
2

π c2
exp(−σ2/(2 c2))

Conclude: Disagreements among the experiments

are larger than predicted by standard Gaussian

statistics; but less than a factor of 2 larger.
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Conclusion from the consistency study

This fit provided direct evidence of a significant

source of discrepancy associated with fixed-target

DIS experiments for large x at small Q. (Higher-twist

effects had been seen there previously; but not taken

into account in PDF fitting — at least by CTEQ.)

Removing those data by a kinematic cut makes the

average disagreement smaller, but it still does not

become consistent with the absolute Gaussian.

In hep-ph/0909.0268, I argue that this suggests a

“tolerance criterion” ∆χ2 ≈ 10 for 90% confidence

uncertainty estimation. It is possible that other

uncertainties in the analysis require larger ∆χ2; but

the experimental inconsistencies do not.
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Studies relating to the choice of ∆χ2

It is important to know if we are underestimating or

overestimating the PDF uncertainties.

For properties that we have little information, the

Hessian method generally underestimates

uncertainties, because completely unknown behavior

requires parametrizations assumptions for

convergence. However, fortunately, this is generally

not too important because the properties that

present-day PDF data are insensitive to are also

generally unimportant for LHC phenomenology.

Example: u(x)− ū(x) at small x is poorly known, and

also unimportant.

Will discuss this further in the PDF4LHC workshop.
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Sum rule tests

A direct test of the treatment of uncertainties can

be made by treating the valence quark numbers

and/or the total partonic momentum as free

parameters in the fit, since for these cases we know

the true answer exactly:

Nu =
∫ 1

0
[u(x)− ū(x)] dx SM value = 2

Nd =
∫ 1

0
[d(x)− d̄(x)] dx SM value = 1

m =
∑

a

∫ 1

0
fa(x)x dx SM value = 1

(These are scale-independent under DGLAP.)

If m only is set free, it moves to 1.025 with a

reduction of 5 in χ2.

If Nu and Nd are set free, they run to 2.6 and 1.3

with a reduction of 10 in χ2.

(Nu and Nd are not well determined in the global fit,

because the data are insensitive to u(x)− ū(x) and

d(x)− d̄(x) at small x, where these quantities are

much smaller than ū(x) and d̄(x).)
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Sum rule tests – continued

If all three are set free, the fit prefers

Nu = 2.8 Nd = 1.5 m = 1.03

with χ2 lower by 15.

Hence we do not want to think of ∆χ2 = 15 as a

significant improvement — at least for the prediction

of quantities that are poorly determined.
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Uncertainty example: Light Gluino

(E. Berger, P. Nadolsky, F. Olness and J. P., Phys.

Rev. D 71, 014007 (2005)

Hypothesizing a gluino of mass ∼ 10GeV improved a

previous global fit by ∼ 25 units in χ2.

We took this an intriguing possible hint for plausible

New Physics. But you would be crazy to consult a

statistical table of χ2 probabilities and declare it

inescapable.
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Parametrization dependence at large x

Our standard fitting procedure adds a penalty to χ2

to force “expected” behavior for the gluon

distribution at large x: 1.5 < a2 < 10 in

x g(x, µ0) = a0 x
a1 (1− x)a2 exp(a3

√
x+ a4x+ a5x

2)

Figure shows the ∆χ2 = 10 uncertainty range.

Curves show a2 = 54 (which produces ∆χ2 = 10)

and a2 = 0 (which requires almost zero ∆χ2)

Non-perturbative theory constraints are important at

large x.
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Parametrization dependence at small x

Figure shows ∆χ2 = 10 uncertainties. Curves show

results of alternative parametrizations that enhance

or suppress the gluon at small x

In a region where the data provide little constraint,

the true uncertainty is much larger than ∆χ2 shows

because of parametrization dependence.

There is very little constraint on gluon at small x for

low scale µ; but at higher scales, the small-x gluon is

generated mainly by DGLAP evolution down from

higher x, so the uncertainties – e.g. for heavy objects

created from gluons at LHC – are not so large.
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Parametrization dep. at intermediate x

Figures show gluon uncertainty at ∆χ2 = 10.

Curves show results from alternative

parametrizations with up to 8 more parameters

added.

The added freedom reduces χ2 by as much as 10 –

15, but the change in the gluon distribution is small

except at extreme x — where we already knew there

was substantial parametrization dependence.
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“Time dependence” of PDFs

∆χ2 = 10 uncertainties in a recent fit (all weights

1.0; run II jet data only).

CTEQ6.6 central fit: used run I jet data only;

different weights for different experiments.

CT09 central fit: used both run I and run II jet data;

different weights for different experiments.

It is clear that ∆χ2 = 1 for 68% confidence would be

overly optimistic.

It appears that ∆χ2 = 10 may be (nearly?) large

enough, in regions where the data provide

substantial constraint.

(Larger time-dependence would be seen for earlier

PDFs because of improving treatments, e.g. of

heavy quarks after CTEQ6.1.)
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“Space dependence” of PDFs

∆χ2 = 10 uncertainties in a recent fit (All weights

1.0; no run I jet data, αs(mZ) = 0.12018 to match

MSTW.)

MSTW2008 central fit

Again it is clear that ∆χ2 = 1 for 68% confidence

would be overly optimistic.

Again it appears that ∆χ2 = 10 may be (nearly?)

big enough in regions where the data provide

substantial constraint.
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Conclusion

• There is an active ongoing program to determine

the PDFs that are needed for LHC.

• As befits a critical mission component, there are

several groups working independently on the

problem.

• Estimating the size of the uncertainties caused

by systematic errors in the theory is a current hot

topic in which further progress can be expected.

To illustrate how easy it is to access the PDFs, a

final figure was obtained by a few clicks on

http://durpdg.dur.ac.uk/hepdata/pdf3.html
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