α_s - evolution

Ulrich Langenfeld

in collaboration with J. Blümlein

Humboldt - Universität zu Berlin

Oct. 2009

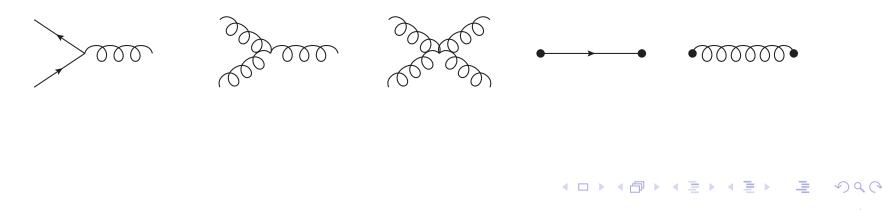
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ▶

- The strong coupling constant α_s is large at low energies (confinement) and small at large energies (asymptotic freedom).
- QCD does not predict α_s , but its energy dependence.
- Testing QCD demands at least two measurements of α_s at different energies. The knowledge of the energy dependence allows the comparison.

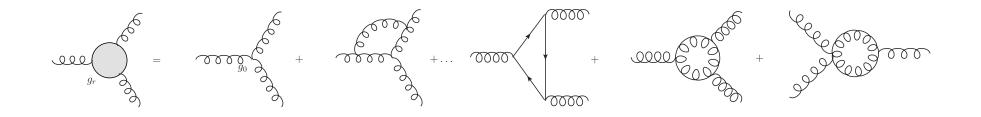
The QCD Langragian

•
$$\mathcal{L}_{\text{QCD}} = \sum_{k=1}^{n_f} \overline{\psi}_k (i\gamma_\mu D^\mu - m_k) \psi_k - \frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}^a$$

- $D^{\mu} = \partial^{\mu} igT^{a}G_{\mu a}$ with gluon field $G_{\mu a}$ and color matrix T^{a} ψ^{k} : quark field with flavour k and mass m_{k} $F^{a}_{\mu\nu} = \partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu} + gf^{abc}G_{\mu b}G_{\nu c}$ (field strength tensor)
- From *L*_{QCD} all QCD interactions arise: quark-quark-gluon vertex, three-gluon vertex, four-gluon vertex, quark and gluon propagators...



Bare and renormalized Quantities



 All diagrams above are formally divergent, introduce Z -factors to reformulate theory, f. e.

•
$$V_{ggg}^0 = Z_1 V_{ggg}^r$$
, $g^0 = Z_g g^r$, $\alpha^0 = Z_3 \alpha^r$, $G_{\mu}^{a,0} = Z_3^{1/2} G_{\mu}^{a,r}$

• $V^0, g^0, \alpha^0, G^{a,0}_{\mu}$: bare, infinite vertex, coupling constant, gauge fixing parameter, gluon field $V^r, g^r, \alpha^r, G^{a,r}_{\mu}$: renormalized, quantities

• Slavnov-Taylor-identity:
$$Z_1 Z_3^{-3/2} = Z_g$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

1-loop results

• Perform loop integrations in $D = 4 - 2\epsilon$ dimensions

•
$$Z_3 = 1 - \frac{\alpha_s}{4\pi} \left[\frac{4}{3} T_R n_f - \frac{1}{2} C_A \left(\frac{13}{3} - \alpha^r \right) \right] \frac{1}{\epsilon}$$

- $Z_1 = 1 \frac{\alpha_s}{4\pi} \left[C_A \left(-\frac{17}{12} + \frac{3}{4} \alpha^r \right) + \frac{4}{3} T_R n_f \right] \frac{1}{\epsilon}$
- $Z_g = 1 \frac{\alpha_s}{4\pi} \frac{1}{6} (11C_A 4T_R n_f) \frac{1}{\epsilon}$ independent of the gauge fixing parameter
- T_R , C_A : gauge group specific constants, n_f : number of flavours
- QED: $T_R = 1$, $C_A = 0$, $Z_e = 1 + \frac{\alpha_{em}}{4\pi} \frac{2}{3} \frac{1}{\epsilon}$

• QCD:
$$T_R = \frac{1}{2}$$
, $C_A = N_c = 3$, $Z_g = 1 - \frac{\alpha_s}{4\pi} \frac{1}{2} \underbrace{\left(11 - \frac{2}{3}n_f\right)}_{>0, \text{ if } n_f < \frac{33}{2}} \frac{1}{\epsilon}$

The scale dependence of the strong coupling

• for dimensional reasons:
$$g^0 = \left(\frac{\mu}{\mu_0}\right)^{\epsilon} g^r Z_g$$

• but physical quantities are scale-independent: $\mu \frac{d}{d\mu}g^0 = 0$

•
$$\Rightarrow \mu \frac{\mathrm{d}g^{r}}{\mathrm{d}\mu} Z_{g} \left(\frac{\mu}{\mu_{0}}\right)^{\varepsilon} + g^{r} \mu \frac{\mathrm{d}Z_{g}}{\mathrm{d}\mu} \left(\frac{\mu}{\mu_{0}}\right)^{\varepsilon} + g^{r} Z_{g} \varepsilon \left(\frac{\mu}{\mu_{0}}\right)^{\varepsilon} = 0$$

• Define $\beta = \mu \frac{d g^r}{d\mu}$ and rewrite the last equation:

$$\beta = \underbrace{-\varepsilon g^{r}}_{\rightarrow 0} - \frac{1}{(4\pi)^{2}} \underbrace{\frac{11C_{A} - 4T_{R}n_{f}}{3}}_{\beta_{0}} (g^{r})^{3} + O((g^{r})^{5})$$

・ロ・・母・・ヨ・・ヨ・ うへぐ

The scale dependence of the strong coupling, cont'd

• Rewrite the last equation in terms of
$$a_s = \frac{(g^r)^2}{(4\pi)^2}$$
:

$$rac{\mathrm{d}\,a_{\mathrm{S}}}{\mathrm{d}\log(\mu^2)}=-eta_{\mathrm{S}}a_{\mathrm{S}}^2$$

• and for *n* loops: $\frac{\mathrm{d} a_s}{\mathrm{d} \log(\mu^2)} = \sum_{k=0}^{\infty} \beta_k a_s^{2+k}$

where the first coefficients β_k are given by

$$\begin{array}{rcl} \beta_{0} & = & 11 - \frac{2}{3}n_{f}, \\ \beta_{1} & = & 102 - \frac{38}{3}n_{f}, \\ \beta_{2} & = & -\frac{2857}{2} + \frac{5033}{18}n_{f} - \frac{325}{54}n_{f}^{2}, \\ \beta_{3} & = & \frac{149753}{6} + 3564\zeta_{3} - \left(\frac{1078361}{162} + \frac{6508}{27}\zeta_{3}\right)n_{f} + \left(\frac{50065}{162} + \frac{6472}{81}\zeta_{3}\right)n_{f}^{2} + \frac{1093}{739}n_{f}^{3} \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ○ ○ ○

The scale dependence of the strong coupling, cont'd

• This differential equation can be solved analytically for k = 0 by separation of variables:

$$\int_{a_{s}(\mu_{0}^{2})}^{a_{s}(\mu^{2})} \frac{\mathrm{d}\,a_{s}}{a_{s}^{2}} = -\beta_{0} \int_{\mu_{0}^{2}}^{\mu^{2}} \mathrm{d}\log(\mu^{2})$$
$$\Rightarrow a_{s}(\mu^{2}) = \frac{a_{s}(\mu_{0}^{2})}{1 + a_{s}(\mu_{0}^{2})\beta_{0}\log(\mu^{2}/\mu_{0}^{2})}$$

• or generally:

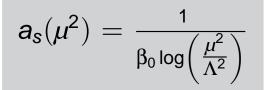
$$\int_{a_{s}(\mu_{0}^{2})}^{a_{s}(\mu^{2})} \frac{\mathrm{d} a_{s}}{a_{s}^{2}(\beta_{0} + \beta_{1}a_{s} + \ldots)} = -\int_{\mu_{0}^{2}}^{\mu^{2}} \mathrm{d}\log(\mu^{2})$$

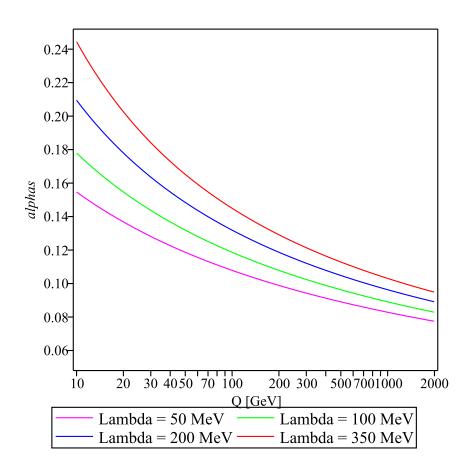
▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

The Λ - parameter

• Define
$$\Lambda^2 = \mu_0^2 \exp\left(-rac{4\pi}{\beta_0 lpha_s(\mu_0^2)}
ight)$$

• and rewrite the evolution equation for a_s :





▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○○○

Properties of the a_s evolution equation

•
$$a_{s}(\mu^{2}) = rac{1}{eta_{0}\log\left(rac{\mu^{2}}{\Lambda^{2}}
ight)}$$

- a_s depends only on the parameter Λ (QCD scale parameter)
- $a_s \rightarrow \infty$ for $\mu \rightarrow \Lambda$ $\Lambda \approx 200 \text{ MeV}$, QCD perturbation theory is valid for $Q^2 \gtrsim 1 \text{ GeV}^2 > \Lambda^2$, i.e. $\alpha_s \lesssim 0.4$
- a_s is a decreasing function of Q^2 due to the negative sign of the rhs of the differential equation and due to $\beta_0 > 0$ for $n_f < 17$ (we have $n_f \le 6$ flavours)

asymptotic freedom: At high energies the particles are free

Maple

- Maple: Computer algebra system (CAS), not only numerical calculations, but also algebraic manipulations
- Useful commands:
 - restart; clears the internal memory of the Maple kernel so that Maple works as if it were restarted; hint: every command is closed by a semicolon ";" or a colon ":" (suppresses output)
 - a := 1; assigns the variable a with the value 1
 - dsolve({ODE, inc}, y(x)): solves the ordinary differential equation
 ODE with the initial condition(s) inc in terms of y(x)
 - with plots:
 - plot(f, x=x0..x1, list_of_options); plots the function f in the interval x0..x1 with the options list_of_options
 - A command is executed by typing [Enter],

Enter

↑ Shift | causes a line break

- **Download** alphasevolution.mw
- Start xmaple (provides a graphical user interface) and open that file.

Threshold matching

- So far, effects of finite quark masses are neglected, o.k. for $Q \gg m_b$
- but important for energies $\approx m_c$, m_b (masses of charm and bottom quark)
- $\Rightarrow a_s$ depends indirectly on the quark masses due to the number of quarks n_f with $m_q < \mu$ entering the β function
- $a_s(\mu, n_f 1)$ and $a_s(\mu, n_f)$ must be consistent at the quark mass threshold $\mu = m_c$ and $\mu = m_b$ \Rightarrow matching conditions
- Naively: a_s(µ = m_{c,b}, nf 1) = a_s(µ = m_{c,b}, nf). Correct for matching at 1- or 2-loop level.

At 3- and 4-loop:
$$\alpha_s(\mu, n_f - 1) = \alpha_s(\mu, n_f) \left(1 + C_2 \left(\frac{\alpha_s}{\pi}\right)^2 + C_3 \left(\frac{\alpha_s}{\pi}\right)^3\right)$$

▲□▶▲□▶▲目▶▲目▶ ▲目 ● ● ●

Threshold matching, cont'd

- At 3 loops and higher: discontinuities at $\mu = m_{c,b}$
- These discontinuities are **NOT** measurable, they are artefacts due to truncation of the β - function

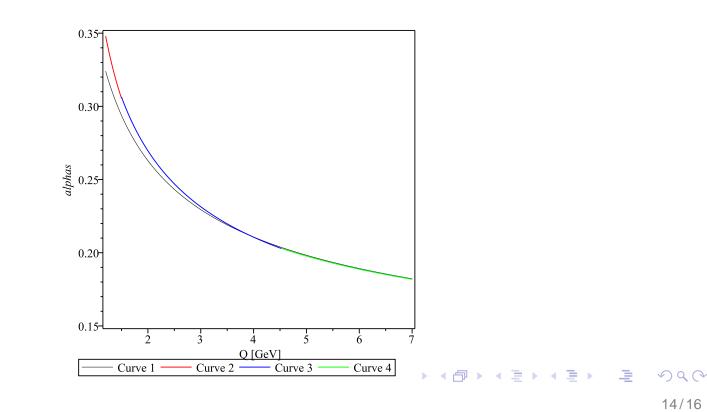
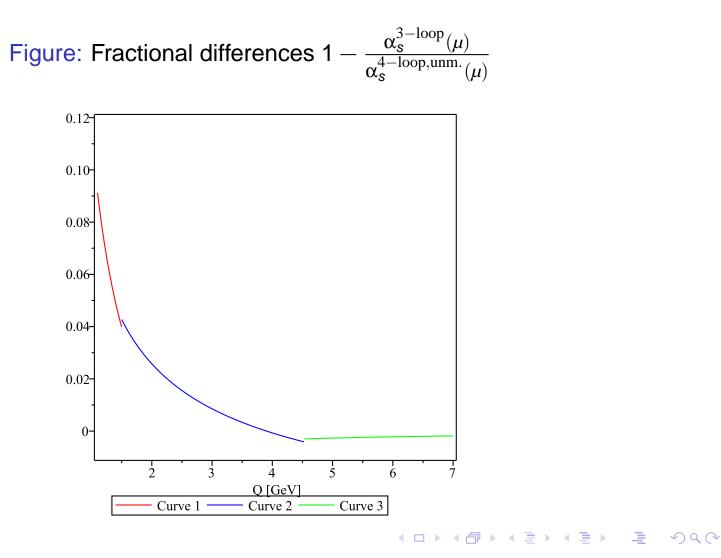


Figure: $\alpha_s^{3-\text{loop}}(\mu)$ with threshold matching

Threshold matching, cont'd

On the following plot, one clearly sees the discontinuities.



α_s from the experiment

• Determine α_s from

•
$$au$$
-decay: $R_{ au} = \frac{\Gamma(au^-
ightarrow hadrons \ v_{ au})}{\Gamma(au^-
ightarrow e^- \overline{v}_e v_{ au})}$, $\alpha_s(M_{Z^0}) = 0.1197 \pm 0.0016$

• bottomonium Υ decay: $R_{\tau} = \frac{\Gamma(\Upsilon \to \gamma gg)}{\Gamma(\Upsilon \to ggg)}$, $\alpha_s(M_{Z^0}) = 0.119 \pm 0.006$

• jet production in
$$e^+e^-$$
 production: $\alpha_s(M_{Z^0}) = 0.1224 \pm 0.0039$

- the ratio of the hadronic to the electronic decay width of the Z^0 boson: $R_{Z^0} = \frac{\Gamma(Z^0 \rightarrow \text{hadrons})}{\Gamma(Z^0 \rightarrow e^+ e^-)}$, $\alpha_s(M_{Z^0}) = 0.1193 \pm 0.0028$
- World average 2009: $\alpha_s(M_{Z^0}) = 0.1184 \pm 0.00067$