Measuring the branching ratio of $h \rightarrow \mu^+ \mu^-$ at the International Linear Collider

Shin-ichi Kawada, Jenny List, Mikael Berggren (DESY) 2018/March/21 DPG Würzburg18

Introduction

Discovery of Higgs-like boson at the LHC --> Last particle of SM? Or beyond SM?

- Anne. nodel-independent determination or EWSB sector with precise measurements or inling relation the existence of BSM Goal: model-independent determination of
- mass-coupling relation
- any deviation shows the existence of BSM

-15

The International Linear Collider

- e^+e^- collider, $E_{CM} = 250 500$ GeV (upgradable to 1 TeV)
- polarized beam (e^{-} : ± 0.8 , e^{+} : ∓ 0.3)
- clean environment, known initial state

Key Point

K. Fujii's talk, LCWS2014

LHC: all measurements are $\sigma \times BR$ ILC: $\sigma \times BR$ measurements + σ measurement

Detector Concept at the ILC

ILD (International Large Detector)

Tracker: Vertex, TPC Calorimeter: ECAL, HCAL 3.5T magnetic field Yoke for muon, Forward system

Requirements:

- ► Impact parameter resolution $\sigma_{r\phi} < 5 \oplus \frac{10}{p \sin^{3/2} \theta} \mu m$
- > Momentum resolution $\sigma_{1/p_T} < 2^*10^{-5} \text{ GeV}^{-1}$
- Energy resolution $\sigma_E/E = 3 4\%$

Higgs Production at the ILC

250 GeV: Zh dominant 500 GeV: WW-Fusion + Zh

Higgs Decaying into Muons

- Can be used for testing
 - $y_f \propto m_f$
 - mass generation mechanism between 2nd/3rd leptons ($\kappa_{\mu}/\kappa_{\tau}$) and 2nd lepton/quark (κ_{μ}/κ_{c})
- Good benchmark for detector optimization
- Challenging: tiny branching ratio (BR($h \rightarrow \mu^+ \mu^-$) = 2.2*10⁻⁴)
- Analyzed 8 channels in total: 2^*E_{CM} (250/500 GeV), 2^*beam polarization (left/right), 2^*final states ($q\bar{q}h/v\bar{v}h$)

arXiv:1801.07966 [hep-ex] (LCWS2017 proceedings)

Brief Summary of Analysis

- Geant4-based full detector simulation with ILD model
- Included all available MC samples
- 1. select $h \rightarrow \mu^+ \mu^-$ candidate
- 2. channel-specific analysis
- 3. multivariate analysis
 - further background rejection
- 4. toy MC with $M_{\mu^+\mu^-}$
 - extract final precision

R	esults		precision for $\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$			arXiv:1801.07966 [hep-ex] (LCWS2017 proceedings) ATLAS-PHYS-PUB-2013-004 CERN-LHCC-2015-10		
	250 GeV	qqh	$v\overline{v}h$		500 GeV	$q\overline{q}h$	vvh	
	L	32.5%	108.6%		L	44.5%	37.0%	
	R	28.1%	110.4%		R	49.5%	74.5%	
	ILC250 co	mbined	= 20.5% ('	"tł	neoretical li	imit" = 1	0.4%)	

ILC250 combined = 20.5% (Theoretical limit -10.4%) ILC250+500 combined = **15.4%** ("theoretical limit" = 7.1%) HL-LHC: 10-21%

Xtheoretical limit = 100% efficiency, no backgrounds, no detector effects

Impact of Momentum Resolution

Momentum resolution (P_t resolution) is most important

• directly affect to $M_{\mu^+\mu^-}$, $\sigma(M_{\mu^+\mu^-})$, ...

signal

other colors: SM background

plots from nnh500-L

Impact of Momentum Resolution

- Studied what will happen when we change the momentum resolution artificially
 - 13 benchmark points —
 - smeared MCParticle momentum of $h \rightarrow \mu^+ \mu^-$ candidate

^{-10⁻¹ /geV 10⁻² 10⁻²}

 10^{-3}

10-4

10⁻⁵

Momentum/GeV

from II C-DBD

- Gaussian-smeared with constant number
 - no momentum/angular dependencies
- replace $M_{\mu^+\mu^-}$ to $M_{\mu^+\mu^-}^{\text{smear}}$ in toy MC

Studied the impact to final number: $\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$ in this study Resolution

(GeV⁻¹)

1*10⁻³

5*10-4

3*10-4

2*10-4

1*10-4

5*10-5

3*10-5

2*10-5

1*10-5

5*10-6

3*10-6

2*10-6

1*10-6

Results (Single Channel)

qqh250-L

nnh500-L

Performance will saturate around ~10⁻⁵ resolution.

WORK IN PROGRESS

WORK IN PROGRESS

Results (Combined)

zig-zag shape: sometimes fitting failed, lack of results Performance will saturate around ~15% at ~10⁻⁵ resolution.

Another Study: 1.4 TeV CLIC $h \rightarrow \mu^+ \mu^-$

Eur. Phys. J. C (2015) 75:515

Fig. 11 Dependence of the relative statistical uncertainty of the $\sigma(H\nu\bar{\nu}) \times BR(H \rightarrow \mu^+\mu^-)$ on the transverse momentum resolution, $\delta_{1/p_{\rm T}}$, averaged over the signal sample in the whole detector

From paper:

To estimate the benefit of a better p_T resolution, the analysis was repeated by substituting the muon four-momenta reconstructed in the full simulation of the signal by the four-momenta obtained by a parametrisation of the momentum resolution for several different values of the detector resolution.

Full: 38%

- Similar tendency with us
- Performance will saturate around 1*10⁻⁵ (~25%)

Summary

- Precise measurement and extracting absolute Higgs couplings are possible at the ILC
- Studied $h \rightarrow \mu^+ \mu^-$ channel with $E_{CM} = 250/500$ GeV at the ILC
 - can reach 15.4% precision for cross section times branching ratio
 - studied the impact of momentum resolution
 - performance will saturate around ~10⁻⁵ resolution, but need more studies