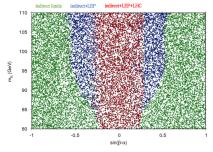
Searching for new light scalars at the ILC

Yan Wang (DESY, IHEP), Jenny List (DESY), Mikael Berggren (DESY)

DPG 2018 — Würzburg

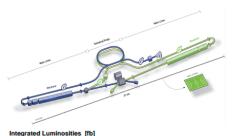
March 12, 2018



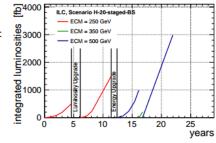
The higgs boson found at 2012: the SM Higgs?

Many BSMs predict one or more extra scalars:

- General Two Higgs Doublet Model (2HDM...)
- Next-to-Minimal Supersymmetric Standard Model (NMSSM)
- Randall Sundrum model
- a scalar lighter than 125 GeV is well motivated.



- LEP/LHC constrains rely on the model details: CP, mass hierarchy, couplings, etc.
- want a better results?



ILC — The International Linear Collider

- ILC properties:
 - ▶ e^-e^+ collider
 - ▶ polarized beams (e⁻: ± 0.8, e⁺: ∓0.3)
 - center-of-mass energy $\sqrt{s} = 250 \text{ GeV}$ for the first stage
 - Energy-upgrade capability 350 GeV, 500 GeV, even 1 TeV

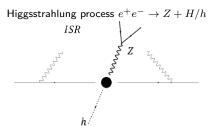
- ▶ ILC Running Scenario for 22 years:
 - 2/ab @ 250 GeV
 - 0.2/ab @ 350 GeV
 - ▶ 4/ab @ 500 GeV
 - if possible 1 TeV upgrade ...

Comparing LEP/LHC and ILC

- comparing with LEP: ILC will be sensitive to lighter scalars with much smaller hZZ coupling.
 - higher luminosity 1000 times recoil mass technique
 - polarised beams more observables, angle correlation
 - better detectors better reconstructed particles, vertexing and momentum resolution...

	LEP	ILC		
\sqrt{s} (GeV)	<189-209	250		
m_h region (GeV)	<115	<125		
luminosity	totally 2461 pb^{-1}	2000 fb^{-1}		
polorization	×	\checkmark		
searching channel	2b2q,2 $b2\nu$,2b2l, $ au au qq$	model independent		
experiment ingredient	b tagging	recoil mass angle correlation momentum resolution		

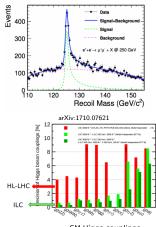
Phys.: Conf. Ser. 110 042030


- comparing with LHC
 - \blacktriangleright LHC, complex initial states and backgrounds, $h \to \gamma \gamma/ZZ...$ channel, large uncertanties.
 - ILC, clean environment, fixed c.m energy, a model-independent analysis.

Yan Wang | Searching for new light scalars at the ILC | March 12, 2018 | $\$ 4/16

The Recoil Method on SM Higgs at ILC

 e^+e^- collider ightarrow fixed the c.m. energy ightarrow recoil technique ightarrow model independence



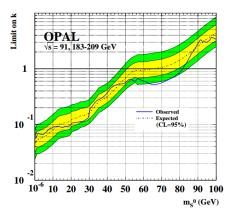
•
$$M_{rec}^2 = (\sqrt{s} - E_{\mu\mu})^2 - |\vec{p}_{\mu\mu}|^2$$

$$\blacktriangleright M_{\mu\mu} \sim M_Z, M_{rec} \sim M_{H/h}$$

the same method on light scalar searching, SM $H \rightarrow$ a lighter h.

SM Higgs recoil mass distribution (ILD)

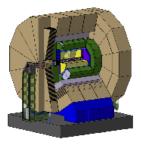
Phys. Rev. D 94, 113002 (2016)


SM Higgs couplings

LEP results (CERN-EP-2002-032):

- the OPAL detector
- Decay-mode independent searches for new scalar bosons
- energy & luminosity:
 - 91.2 GeV and 115.4 pb⁻¹ at LEP1
 - 161 to 202 GeV and 662.4 pb⁻¹ at LEP2.
- light higgs mass: 10 keV 100 GeV

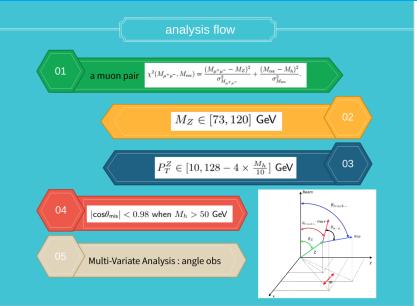
$$\blacktriangleright \ k = \frac{\sigma_{S^0Z}}{\sigma_{H_{\mathsf{SM}}Z}(m_{H_{SM}}=m_{S^0})}$$


ILD (International Large Detector)

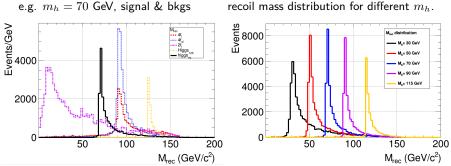
and full simulation of Signal and SM Background

- Tracker: Vertex, TPC
- Calorimeter: ECAL, HCAL
- 3.5T magnetic field
- Yoke for muon, Forward system
- Requirements:
 - Impact parameter resolution: $\sigma_{r\phi} < 5 \oplus 10/(p \ sin^{3/2}\theta)\mu m$
 - Momentum resolution: $\sigma_{1/p_T} < 2*10^{-5} \, {\rm GeV}^{-1}$
 - Energy resolution: $\sigma_E/E = 3 4\%$

The signal MC samples


- ▶ $M_h = 10, 15, 20, ..., 120 \text{ GeV},$ every 5 GeV step.
- decay branch ratios are the same as the 125 GeV SM Higgs boson.

The background MC samples:


- 2-fermion (2f^l,2f^h) leptonic/bhabha/hadronic
- ► 4-fermion (4f^l, 4f^{sl}, 4f^h) leptonic/semi-lepton/hadronic
- ▶ SM Higgs, *Higgs*₁₂₅
- $\gamma\gamma$ backgrounds

recoil mass distribution


Four regions.

mass region	main backgrounds			
$125 > m_h > m_z$	$4f_{zz}^{sl}, 4f_{zzww}$, SM Higgs			
$m_h \sim m_z$	$4f_{zz}^l, 4f_{zz}^{sl}, 4f_{zzww}$, SM Higgs			
$m_z > m_h > 40$	$2f_l, 4f_{zz}, 4f_{zzww}$			
$40 > m_h$	$2f_l$			

Yan Wang | Searching for new light scalars at the ILC | March 12, 2018 | 9/16

Results of exclusion limits for $(\kappa_{hZZ}^{95})^2 = k = \frac{\sigma_{S^0Z}}{\sigma_{H_{SM}Z}(m_{H_{SM}} = m_{S^0})}$

- ▶ 95% CL upper bounds on κ^{95}_{hZZ} coupling factor with likelyhood methods
- ▶ LEP recoil: LEP2 data from 161 GeV to 202 GeV, , combined LEP1 data.
- ▶ LEP traditioanl: exclusive reconstruction of Z and h decay, mainly $h \rightarrow bb$, $h \rightarrow \tau \tau$.
- when $100 \ge M_h \ge 50$ GeV, trend are similar with LEP.
- ▶ when $M_h \leq 50$ GeV, Br(h) = BR(vis) + Br(invis) in LEP recoil results, slight model dependence.
- generally, 1 order smaller than LEP recoil results Yan Wang | Searching for new light scalars at the ILC | March 12, 2018 | 10/16

A lighter higgs is favored in many BSM models

2HDM, NMSSM, RS …

A model-independent analysis has been performed.

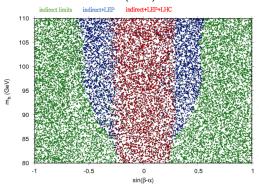
- mass range [10, 120) GeV
- 2000 fb⁻¹, when $\sqrt{s} = 250$ GeV.
- (-+,+-,--,++) = (45%,45%,5%,5%) scenario
- Exclusion limits for κ^{95}_{hZZ} coupling factor
 - $\kappa_{hZZ}^{95} \in (0.07-0.1).$
 - 1 order better than LEP recoil results.

backup

The higgs boson found at 2012: the SM Higgs?

Many BSMs predict one or more extra scalars:

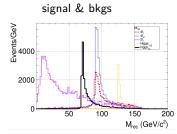
- General Two Higgs Doublet Model (2HDM...)
 with 2 scalars: h, H, 1 pheudoscalar A, 2 charged particles
- Next-to-Minimal Supersymmetric Standard Model (NMSSM)
 with 3 scalars: h1, h2, h3, 2 pheudoscalars A1, A2, 2 charged particles
- Randall Sundrum model
 - a radion


In these models, a scalar lighter than 125 GeV is well motivated.

LHC Higgs boson rather SM-like \rightarrow new higgs coupling to Z boson strongly suppressed. Could we find it at the ILC?

LEP SM Higgs searches: constrain other extra scalars, whose properties, especially decay profile, are similar as SM higgs's.

LEP/LHC constrain rely on the model details: CP, mass hierarchy, couplings, etc. JHEP 12 (2016) 068


2HDM, Type I: $tan\beta > 1.2$, $m_A > 60$ GeV, $m_{H^{\pm}} > 80$ GeV ...

cut effi

Four regions.

mass region	main backgrounds			
$125 > m_h > m_z$	$4f_{zz}^{sl}, 4f_{zzww}$, SM Higgs			
$m_h \sim m_z$	$4f_{zz}^l, 4f_{zz}^{sl}, 4f_{zzww}$, SM Higgs			
$m_z > m_h > 40$	$2f_l, 4f_{zz}, 4f_{zzww}$			
$40 > m_h$	$2f_l$			

Cut efficiencies for different masses:

$\int Ldt = 2000 f b^{-1}$	new higgs	$4f_l$	$4f_{sl}$	$2f_l$	$total \ bk$	cut efficiency	significance
$m_h = 115 \; {\rm GeV}$	17419.6	61033.9	53869.4	13877.7	128781	0.67	45.56
$m_h = 90 \text{ GeV}$	22198.2	63210.7	74563	18514.2	156288	0.59	52.54
$m_h = 70 \; {\rm GeV}$	26841.3	51671.6	60357.7	37166.6	149196	0.57	63.97
$m_h = 50 \text{ GeV}$	30493.5	46128.1	54372.8	80074.4	180575	0.54	66.37
$m_h = 30~{ m GeV}$	33843.7	51206.6	55743.3	213184	320134	0.49	56.88

significance =
$$\frac{S}{\sqrt{S+B}}$$
, and $S = \kappa_{gZZ}^2 \times \sigma_{h\mu\mu}^{m_h} \times \mathfrak{L}$, where $\kappa_{gZZ} = 1$
Yan Wang | Searching for new light scalars at the ILC | March 12, 2018 | 15/16

- \blacktriangleright 2 σ exclusion limits with a bin-by-bin comparison between the signal and backgrounds recoil mass histograms.
- ▶ the background-only hypothesis no new higgs in the investigated mass range.
- ▶ the signal-plus-background hypothesis the new higgs is assumed to be produced.
- ▶ a global test-statistic $X(m_h) = \mathcal{L}(s(m_h))/\mathcal{L}(0)$ is constructed to discriminate signal and background.
- ▶ the distributions of $X(m_h)$ are normalised to become probability density functions → integrated to be the confidence levels $CL_b(m_h)$ and $CL_{s+b}(m_h)$.
- ▶ the ratio $CL_s(m_h) = CL_{s+b}(m_h)/CL_b(m_h)$ is used to described that the signal confidence one might have obtained in the absence of background.

