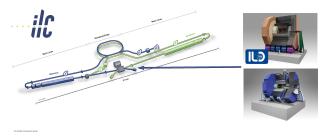
WW/ZZ separation in their hadronic decays at the ILC DPG-Frühjahrstagung Materie und Kosmos, Würzburg

Jakob Beyer $^{1,2}\text{,}$ Michael Kobel $^2\text{,}$ Jenny List 1

 $^{1}\mathsf{DESY}$ Hamburg


 2 Technische Universität Dresden

February 19, 2018

The ILC and its detectors

The International Linear Collider (ILC)

- Future linear e^+e^- Collider: $\sqrt{s} = 250 \text{ GeV}$ (First stage, extendable up to 1 TeV)
- Construction under political consideration in the Kitakami region, Prefecture Iwate, Japan
- ▶ Both beams (e^+ , e^-) are polarized: $P_{e^-} = \pm 80\%$, $P_{e^+} = \pm 30\%$
- Designed for precision studies for physics of the standard model and beyond

Toboki

THE TOHOKU REGION OF JAPAN

AOMOR

AKITA

YAMAGATA

FUKUSHIMA

IWATE

The ILC and its detectors

The International Large Detector (ILD)

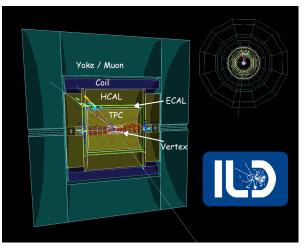


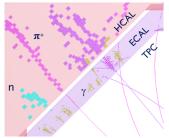
Figure : $\mu\mu+2\,{\rm jets}$ event in the ILD detector.

Optimized for: Particle Flow and precision physics

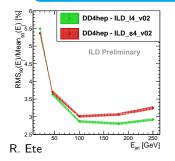
- Particle Flow: Use only information from subdetector with best resolution
- Highly granular calorimeters
- Efficient tracking using Time Projection Chamber
- Full solid angle coverage

 $W\,/\,Z$ separation @ the ILD

Electroweak precision at the ILD

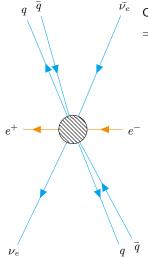

• $BR(W/Z \rightarrow \text{hadrons}) \sim 70\%$

 \rightarrow in hadron colliders inaccessible due to pile-up


- ► In lepton colliders clean event and jet reconstruction ⇒ Hadronic boson decay modes accessible
- \blacktriangleright Want to separate W and Z by invariant dijet mass

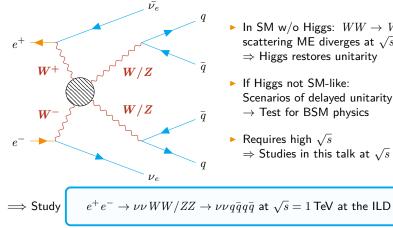
 \rightarrow Requirement:

Jet energy resolution $\sigma_E/E \sim 3-4\%$


 $\ensuremath{\mathsf{Figure}}$: $250\,\ensuremath{\mathsf{GeV}}$ jet in the ILD

- Benchmark achievable with current technology
 - \Rightarrow Test ILD potential in hadronic physics channels

$e^+ e^- \longrightarrow \nu \nu q \bar{q} q \bar{q}$ to demonstrate ILD potential


- Choose final state: $u
 u q \overline{q} q \overline{q}$
 - \Rightarrow Demonstrates full potential of ILC + ILD:
 - Reconstructing particles from 4 jets accurately requires:
 - Separation of individual particles
 - \longrightarrow Granularity
 - Precise reconstruction software

 —> Particle Flow
 - ν reconstruction requires:
 - Precise initial state knowledge
 - \rightarrow No PDFs in initial state
 - Full event reconstruction
 - \rightarrow Full angular coverage
 - (Differential) Cross-section highly dependent on beam polarisations

$e^+e^- \longrightarrow \nu \nu q \bar{q} q \bar{q}$: physical motivation

Matrix element for $\nu\nu q \bar{q} q \bar{q}$ final state includes Vector Boson Scattering (VBS):

- ▶ In SM w/o Higgs: $WW \rightarrow WW/ZZ$ scattering ME diverges at $\sqrt{s} \ge 1.2 \text{ TeV}$ \Rightarrow Higgs restores unitarity
- If Higgs not SM-like: Scenarios of delayed unitarity restauration \rightarrow Test for BSM physics

▶ Requires high
$$\sqrt{s}$$

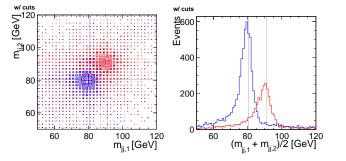
⇒ Studies in this talk at $\sqrt{s} = 1 \text{ TeV}$

Basic setup

Goal: Investigate separation of WW and ZZ in $e^+e^- \rightarrow \nu\nu WW/ZZ \rightarrow \nu\nu q\bar{q}q\bar{q}$

- 1. Define WW/ZZ events in $\nu\nu q\bar{q}q\bar{q}$ sample on generator level
- 2. Detector simulation & event reconstruction using *iLCsoft*
- 3. Apply preselection for SM background reduction
- 4. Find invariant masses of the W/Z candidates

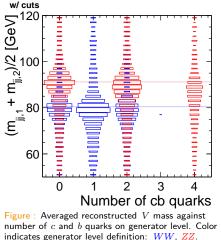
Find W/Z invariant masses


Goal: Investigate separation of WW and ZZ in $e^+e^- \rightarrow \nu\nu WW/ZZ \rightarrow \nu\nu q\bar{q}q\bar{q}$

- 1. Define WW/ZZ events in $\nu\nu q\bar{q}q\bar{q}$ sample on generator level
- 2. Detector simulation & event reconstruction using *iLCsoft*
- 3. Apply preselection for SM background reduction
- 4. Find invariant masses of the W/Z candidates
 - \rightarrow Use reconstructed particle to calculate invariant masses of W/Z candidates
 - Cluster particles into 4 jets
 - Pair up jets into 2 boson-dijet candidates by minimizing $|m_{jj,1} m_{jj,2}|$
 - ▶ Plot boson masses m_{jj} for (*WW*) and (*ZZ*) events

WW/ZZ separation plots

- 4. Find invariant masses of the W/Z candidates:
 - \rightarrow Use reconstructed particle to calculate invariant masses of W/Z candidates
 - Cluster particles into 4 jets
 - Pair up jets into 2 boson-dijet candidates by minimizing $|m_{jj,1} m_{jj,2}|$
 - Plot boson masses m_{jj} for (*WW*) and (*ZZ*) events

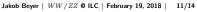

- Lumi: $\mathcal{L} = 1 \text{ ab}^{-1}$
- Good separation of WW and ZZ peaks.
- ► Shifted mass peaks wrt. boson masses → ?
- ► Long tails to high and low m_{jj} \rightarrow ?

 $\nu \nu WW/ZZ \longrightarrow \nu \nu q \bar{q} q \bar{q}$ Analysis results

Influence of heavy quarks

 \longrightarrow Test influence of number of c and b quark on reconstructed m_{jj} distributions

- ► Heavy quarks shift mass peaks ⇒ Further investigation!
- Even without heavy quarks tail remains



Jet corrections

The TrueJet processor

 \Rightarrow Distinguish clustering, detector resolution, detector acceptance, ...

- ▶ ILC: Future linear e^+e^- collider with $\sqrt{s} = 250 \text{ GeV} (...1 \text{ TeV})$
- > Investigating $\nu\nu q\bar{q}q\bar{q}$ final state using the ILD
 - \rightarrow Demonstrates potential of lepton machine
 - \rightarrow Interesting channels for Higgs-related BSM physics
- \blacktriangleright Can achieve separation of WW and ZZ events using invariant mass
- Found issue in heavy quark jet reconstruction
 - \rightarrow Now using TrueJet tool to investigate jet corrections

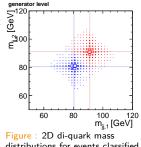
Thanks for your attention!

Jakob Beyer | WW / ZZ @ ILC | February 19, 2018 | 13/14

- [lwa] lwate and the ILC Kitakami Site, http://www.iwate-ilc.jp/eng/about-the-kitakami-site/, Accessed: 2018-03-08.
- [LCC] LCCollaboration Image and Graphics, http://www.linearcollider.org/images/, Accessed: 2018-03-08.
- [MT13] J. S. Marshall and M. A. Thomson, <u>Pandora Particle Flow Algorithm</u>, Proceedings, International Conference on Calorimetry for the High Energy Frontier (CHEF 2013): Paris, France, April 22-25, 2013, 2013, pp. 305–315.
- [Sci] Science Hello Kitty LCNewsLine, https://twitter.com/lcnewsline/status/758229951854284801, Accessed: 2018-03-08.
- [Zep] D. Zeppenfeld Standard Model at Hadron Colliders (Lecture 2005), http://www.gk-eichtheorien.physik.uni-mainz.de/Dateien/Zeppenfeld-1.pdf, Accessed: 2018-03-08.

ВАСКИР

Jakob Beyer | WW/ZZ @ ILC | February 19, 2018 | 15/14


BACKUP

WW/ZZ event definition

Goal: Investigate separation of WW and ZZ in $e^+e^- \rightarrow \nu\nu WW/ZZ \rightarrow \nu\nu q\bar{q}q\bar{q}$

1. Define WW/ZZ events in $\nu\nu q\bar{q}q\bar{q}$ sample on generator level:

- \rightarrow Want events with $q\bar{q}q\bar{q}$ from $WW\rightarrow WW/ZZ$, but samples use full $\nu\nu q\bar{q}q\bar{q}$ ME
- \rightarrow Define $WW \rightarrow WW/ZZ$ events on generator level:
 - Incoming particles:
 e⁻ left-handed, e⁺ right-handed
 - Quark flavours in agreement with WW/ZZ
 - ▶ $147.0 < m_{qq}^1 + m_{qq}^2 < 171.0 \text{ (}WW\text{)},$ $171.0 < m_{qq}^1 + m_{qq}^2 < 195.0 \text{ (}ZZ\text{)}$
 - $|m_{qq}^1 m_{qq}^2| \le 20.0 \text{GeV}$
 - $m_{\nu_e \bar{\nu}_e} \ge 100.0 \, \text{GeV}$

distributions for events classified as WW or ZZ (normalized).

- 2. Detector simulation & event reconstruction using *iLCsoft*
- 3. Apply preselection for SM background reduction:
- 4. Find invariant masses of the W/Z candidates; $WW/ZZ \otimes ILC | February 19, 2018 | 16/14$

BACKUP

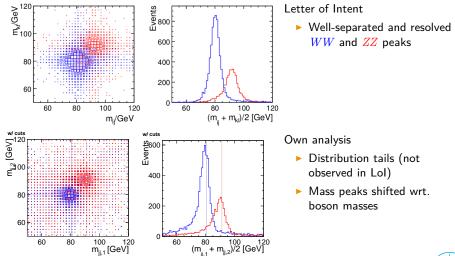
Preselection

Goal: Investigate separation of WW and ZZ in $e^+e^- \rightarrow \nu\nu WW/ZZ \rightarrow \nu\nu q\bar{q}q\bar{q}$

- 1. Define WW/ZZ events in $\nu\nu q\bar{q}q\bar{q}$ sample on generator level:
- 2. Detector simulation & event reconstruction using *iLCsoft*
- 3. Apply preselection for SM background reduction:
 - \rightarrow apply cuts as in previous work (ILD Letter of Intent arXiv:1006.3396):
 - Cuts on jet content to reject $t\bar{t}$ events
 - $Y_{34} > 0.0001 \rightarrow$ Event does not have less than 4 jets
 - ▶ Suppress 2- and 4-fermion and $ZWW/ZZZ(, Z \rightarrow \nu\nu)$ background using $m_{missing}$, $E_{T,visible}$ and $p_{T,visible}$
 - Missing momentum not from particles going to beam pipe
 - Suppress ISR- $\gamma \rightarrow$ hadrons events using highest energetic track
 - Reject $t\bar{t} \rightarrow b\bar{b}q\bar{q}l\nu$ using cone around most energetic track
- 4. Find invariant masses of the W/Z candidates:

Reject events with SM-background-like signatures:

- ▶ Jets must have \geq 2 particles and \geq 3 charged particles → reduce $t\bar{t}$ events with isolated leptons
- $\blacktriangleright~Y_{34} > 0.0001 \rightarrow$ Event does not have less than 4 jets
- ▶ To suppress 2- and 4-fermion and $ZWW(, Z \rightarrow \nu\nu)$ background require:

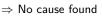

$$m_{recoil} = \sqrt{E_{miss}^2 - p_{miss}^2} > 200 \text{ GeV}$$

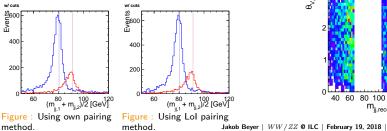
$$E_{T,visible} \ge 150 \text{ GeV}$$

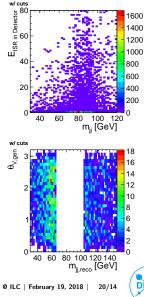
•
$$p_{T,visible} \ge 40 \, \text{GeV}$$

- Missing momentum not from particles going to beam pipe:
 - $\rightarrow |\cos(\theta_{miss})| < 0.99$
- ▶ To suppress ISR→hadrons bkg: → $|\cos{(\theta)}| < 0.99$ for highest energetic track
- To reject $t\bar{t} \rightarrow b\bar{b}q\bar{q}l\nu$:
 - ightarrow 10° cone around most energetic track: $E_{cone} \geq 2.0 \ {
 m GeV}$

Recreation of performance plots

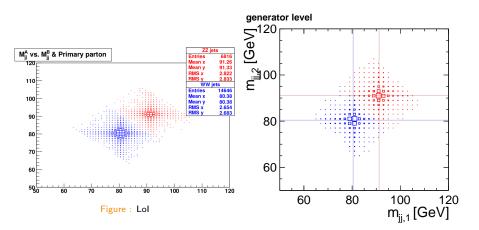



Jakob Beyer | WW/ZZ @ ILC | February 19, 2018 | 19/14

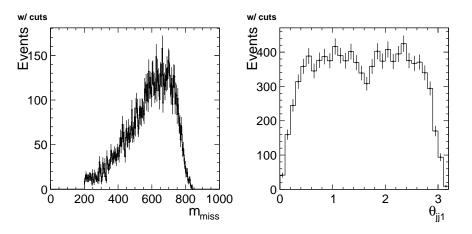

Performance plots - Tail regions

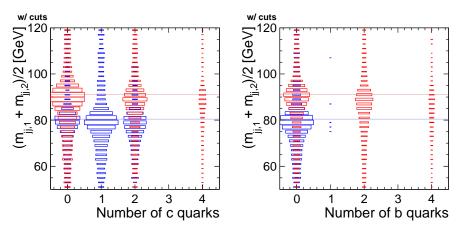
Investigated tail regions:

- Tested for ISR effects
 - \rightarrow How much of detected energy linked to ISR?
- Tested for detector region using V(W/Z) boson angle
 - \rightarrow Is mass tail angle specific?
- Tested jet pairing
 - \rightarrow Does my jet pairing method cause the tails?



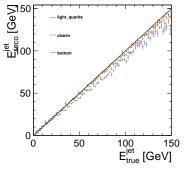
BACKUP


Generator Level - Lol and own results



Event shape

Mass shift - separately c and b


Jakob Beyer | WW/ZZ @ ILC | February 19, 2018 | 23/14

Using TrueJet for jet corrections

Goal: Use TrueJet to identify possible corrections for each step in jet measurement

► Example: Reconstructed energy of jet VS true energy of jet origin

x: true - y: reco

- Correctly clustered jets
- Differentiate between jet origins
 - All jets need Jet Energy Scale! $\rightarrow b$ jets stronger mismeasured \Rightarrow Possibility: Search for leptons and

infer neutrino

Next step: Detailed analysis of each step

Jet 4-momentum corrections

