

VXDTF2 MVA QE: Figures of Merit and Helix parameters

Online Tracking Meeting Sebastian Racs | 2nd March 2018

Follow-up on last tracking meeting

Reminder

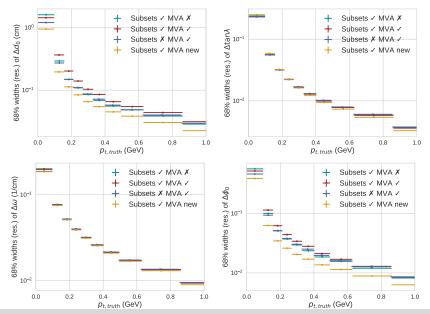
- Why is there a drop in Hit Efficiency when using the VXDTF2 MVA?
- On master state bbe0a3b1 (13.02.18)
- 15k \Upsilon(4S) events with official phase 3 Bkg overlay 15th Campaign
- SVDonly tracking
- MVA with default weight (without timing) from master

New

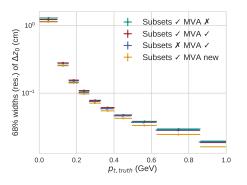
- In addition to the figures of merit also look at helix parameters
- Compare Fit values with MC values for RecoTracks:
 - lacktriangle Δ param_i = param_{i,PR} param_{i,True}
 - ⇒ Table with Offset: mean and Resoultion: 68% Quantile Width

68% Quantile Width (or $\pm 1\sigma$ equivalent range)

68% wd = percentile_{84%}(Δ param) - percentile_{16%}(Δ param)


Figures of merit & Helix parameters

Subs	MVA	Find. Eff.	Hit Eff.	Hit Purity	Fake Rate
/	Х	0.9199	0.8990	0.9674	0.0656
✓	✓	0.9314	0.8611	0.9684	0.0593
Х	Х	0.8783	0.9046	0.9661	0.0679
X	✓	0.8811	0.9045	0.9691	0.0624
✓	new	0.9345	0.7712	0.9899	0.0605


Subs	MVA	Δd_0 (cm)		$\Delta \tan \lambda$		$\Delta\omega$ (1/cm)		$\Delta\phi_0$		Δz_0 (cm)	
		mean	68% wd	mean	68% wd	mean	68% wd	mean	68% wd	mean	68% wd
1	Х	0.0210	0.111	-0.0125	0.0166	0.0019	0.0399	-0.0076	0.0371	0.0615	0.0851
1	✓	0.0088	0.141	-0.0105	0.0167	0.0020	0.0380	-0.0043	0.0449	0.0333	0.0835
X	Х	0.0129	0.111	-0.0097	0.0170	0.0014	0.0405	-0.0079	0.0379	0.0433	0.0869
X	✓	0.0063	0.114	-0.0113	0.0168	0.0016	0.0386	-0.0037	0.0386	0.0623	0.0799
✓	new	0.0064	0.064	-0.0089	0.0139	0.0016	0.0328	-0.0005	0.0189	0.0472	0.0627

- With current default weight file MVA is NOT better for all parameters
- MVA with new weight has small offsets and better resolutions

Helix parameter resolutions by p_t Profile

Helix parameter resolutions by p_t Profile

Results for p_t < 1 GeV range

- MVA with current weight file worse for some parameters than without MVA
- MVA with new weight file always better (or at least equal)

Discussion

- Do we want 13% loss in Hit Efficiency but very good Hit Purity and increase in Helix parameter resolutions?
- Might be improved further with timing information
- Still has to be checked when Full CKF setup is available
- Still some issues with the fit results: Δp_t is very large because for some reason most $p'_{t,PR} \gg p'_{t,True}$?