

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Leptophilic Dark Matter from Gauged Lepton Number

Phenomenology and Gravitational Wave Signatures arXiv:1809.09110

Eric Madge in collaboration with Pedro Schwaller Johannes Gutenberg Universität Mainz, Institute of Physics DESY Theory Workshop 2018

September 27, 2018

Gauged Lepton Number

 $SM + RH-\nu$

- + $U(1)_\ell$ lepton number gauge group
- + spontaneous lepton number breaking
- + anomaly cancellation

- $\implies Z'$ gauge boson
- \implies scalar field ϕ
- \implies 4 exotic leptons DM candidate

Gauged Lepton Number

 $SM + RH-\nu$

- + $U(1)_\ell$ lepton number gauge group
- + spontaneous lepton number breaking
- + anomaly cancellation

Phenomenology

- LEP: $m_{Z'} > 200 \text{ GeV}, \ v_{\Phi} > 1880 \text{ GeV}$
- LHC: Z' searches, Higgs measurements, exotic lepton searches
- DM: relic density, direct/indirect detection
- 1st order phase transition \Longrightarrow GW

- $\implies Z'$ gauge boson
- \implies scalar field ϕ
- \implies 4 exotic leptons DM candidate

Gauged Lepton Number

 $SM + RH-\nu$

- + $U(1)_\ell$ lepton number gauge group
- + spontaneous lepton number breaking
- + anomaly cancellation

Phenomenology

- LEP: $m_{Z'} > 200 \text{ GeV}, \ v_{\Phi} > 1880 \text{ GeV}$
- LHC: Z' searches, Higgs measurements, exotic lepton searches
- DM: relic density, direct/indirect detection
- 1st order phase transition \Longrightarrow GW

- $\implies Z'$ gauge boson
- \implies scalar field ϕ
- \implies 4 exotic leptons DM candidate

- $\implies v_{\Phi} = 2 \text{ TeV}$
 - ← see 1809.09110
 - $\leftarrow \text{ next slide}$
 - $\leftarrow \mathsf{ main focus}$

Dark Matter

Relic Density

DM candidate: mostly SM singlet, chiral couplings to Z'

3.0 2.5 $\Gamma' =$ mon internet $\overset{2.0}{\overset{[]}{\overset{[]}{\overset{[]}{\underset{w}{1.5}}}}}_{\overset{i}{w}}^{2.0}$ 1.0 0.50 100 200 300 500 600 700 800 900 1000 400 $m_{\rm DM}$ [GeV]

Dark Matter

DM candidate: mostly SM singlet, chiral couplings to Z' doublet admixture: $\nu_{\rm DM} = \cos\theta_{\rm DM} \ \nu_S + \sin\theta_{\rm DM} \ \nu_D$

Cosmological Phase Transitions

finite-T corrections restore symmetry at high T

 \implies symmetry breaking phase transition in the early Universe

Cosmological Phase Transitions

finite-T corrections restore symmetry at high T

 \implies symmetry breaking phase transition in the early Universe

Cosmological Phase Transitions

finite-T corrections restore symmetry at high T

 \implies symmetry breaking phase transition in the early Universe

Gravitational Waves only from 1st-order Transition!

1st-Order Phase Transition

high- and low-T minima separated by barrier

- \implies 1st-order PT via tunneling
- \implies bubble nucleation

Nucleation Temperature

- nucleation rate \longleftrightarrow Hubble expansion $\Gamma(T) \iff H(T)$
- nucleation temperature (T_n) : $\Gamma/H^4 \sim 1$

Nucleation Temperature

- nucleation rate \longleftrightarrow Hubble expansion $\Gamma(T) \iff H(T)$
- nucleation temperature (T_n) : $\Gamma/H^4 \sim 1$

without dark leptons

Nucleation Temperature

- nucleation rate \longleftrightarrow Hubble expansion $\Gamma(T)$ $\leftrightarrow H(T)$
- nucleation temperature (T_n) : $\Gamma/H^4 \sim 1$

 $m_{\rm DM} = 500 \,\,{\rm GeV}, \,\, m_{\rm HL} = 1 \,\,{\rm TeV}$

Gravitational Waves

GW spectrum: $h^2\Omega_{\rm GW}(f) \simeq h^2\Omega_{\phi}(f) + h^2\Omega_{\rm sw}(f) + h^2\Omega_{\rm turb}(f)$

• $h^2\Omega_{\phi}(f)$: collision of bubble walls

Gravitational Waves

GW spectrum: $h^2\Omega_{\rm GW}(f)\simeq h^2\Omega_{\phi}(f)+h^2\Omega_{\rm sw}(f)+h^2\Omega_{\rm turb}(f)$

- $h^2\Omega_{\phi}(f)$: collision of bubble walls
- $h^2\Omega_{sw}(f)$: sound waves in the plasma

Gravitational Waves

 $\text{GW spectrum: } h^2\Omega_{\text{GW}}(f) \simeq h^2\Omega_{\phi}(f) + h^2\Omega_{\text{sw}}(f) + h^2\Omega_{\text{turb}}(f)$

- $h^2\Omega_{\phi}(f)$: collision of bubble walls
- $h^2\Omega_{sw}(f)$: sound waves in the plasma
- $h^2\Omega_{turb}(f)$: turbulence, vortical fluid motion

Detectability

neglecting dark leptons

Detectability

Summary

- SM + $U(1)_{\ell}$ + vector-like leptons (provide DM candidate)
- Constraints:

LEP-2: $v_{\Phi} > 1880$ GeV LHC: Higgs measurements, Z' searches Direct Detection: mixing angles

- ℓ breaking PT can be 1st order
- generated stochastic GW background can be probed by future experiments (LISA, B-DECIGO, DECIGO, BBO)
- exotic leptons significantly enhance detectability

Summary

- SM + $U(1)_{\ell}$ + vector-like leptons (provide DM candidate)
- Constraints:

LEP-2: $v_{\Phi} > 1880$ GeV LHC: Higgs measurements, Z' searches Direct Detection: mixing angles

- ℓ breaking PT can be 1st order
- generated stochastic GW background can be probed by future experiments (LISA, B-DECIGO, DECIGO, BBO)
- exotic leptons significantly enhance detectability

Thank you for your attention!