DARK MATTER PAIR-PRODUCTION IN THE MSSM AND SDMMS AT THE LHC

Christoph Borschensky

Institute of Theoretical Physics, University of Tübingen
Based on work in progress in collaboration with Gabriele Coniglio and Barbara Jäger

DESY Theory Workshop

Particle Physics Challenges.

EBERHARD KARLS UNIVERSITAT TUBINGEN

雿

Hamburg, 27 September 2018

Outline

(1) Motivation

Dark matter and the search for it Supersymmetry
(2) Simplified dark matter models s-channel models t-channel models
NLO QCD corrections
(3) Comparison of MSSM and SDMMs
(4) Summary

What today's universe is made of

Universe

What today's universe is made of

Universe

$\sim 5 \%$ visible, atomic matter

What today's universe is made of

Universe

~ 26\% invisible, dark matter
$\sim 5 \%$ visible, atomic matter

What today's universe is made of

$\sim 5 \%$ visible, atomic matter

What today's universe is made of

~ 69% dark energy

Universe

$\sim 5 \%$ visible, atomic matter
(< 1\% neutrinos)

What today's universe is made of

The dark matter model space

Figure taken from [Abdallah et al. '15, arXiv:1506.03116]
C. Borschensky - DM in MSSM \& SDMMs

The dark matter model space

Intermission: What is Supersymmetry?

Supersymmetry connects bosonic and fermionic degrees of freedom

 Standard Model particles

Supersymmetric partners

Squarks Sleptons Gluino Neutralinos \& charginos

- New set of "mirrored" particles
- Possible solutions to several theoretical and experimental problems (e.g. hierarchy problem, grand unification, dark matter)
- Broken symmetry: $M_{\text {SUSY }} \gg M_{\text {SM }}$
- R-parity: SUSY particles are odd, SM particles are even
\Rightarrow Lightest supersymmetric particle (LSP) is stable (DM candidate)
- Neutralinos are mixed states of interaction eigenstates of EW fields:

$$
\tilde{\chi}_{1}^{0}=N_{11} \tilde{B}+N_{12} \tilde{W}_{3}+N_{13} \tilde{h}_{1}+N_{14} \tilde{h}_{2}
$$

Intermission: What is Supersymmetry?

Supersymmetry connects bosonic and fermionic degrees of freedom

Supersymmetric partners

- New set of "mirrored" particles
- Possible solutions to several theoretical and experimental problems (e.g. hierarchy problem, grand unification, dark matter)
- Broken symmetry: $M_{\text {SUSY }} \gg M_{S M}$
- R-parity: SUSY particles are odd, SM particles are even
\Rightarrow Lightest supersymmetric particle (LSP) is stable (DM candidate)
- Neutralinos are mixed states of interaction eigenstates of EW fields:
$\tilde{\chi}_{1}^{0}=N_{11} \tilde{B}+N_{12} \tilde{W}_{3}+N_{13} \tilde{h}_{1}+N_{14} \tilde{h}_{2}$

Different detection channels for DM

LHC searches

- If DM is light enough, it can be produced at colliders
- Missing E_{T} signatures
collider production

indirect detection

DM-nucleus interactions

- Searches for candidates in direct DM-nucleus scattering at e.g. the CRESST or XENON experiments
- Very low number of events expected per year

DM annihilation

- Searches for excesses in γ-rays, antiparticles, high-energy νs

Different detection channels for DM

LHC searches

- If DM is light enough, it can be produced at colliders
- Missing E_{T} signatures

indirect detection

DM annihilation

- Searches for excesses in γ-rays,
antiparticles, high-energy \mathcal{V}

How well does χ-pair production at the LHC agree in SDMMs and the MSSM?

Types of simplified DM models: The s-channel case

Assumption: $\mathrm{DM}(\chi)$ is a singlet under $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ and ...

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Types of simplified DM models: The s-channel case

Assumption: $\mathrm{DM}(\chi)$ is a singlet under $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ and..

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Possible Lagrangians with a scalar or vector mediator:

$$
\begin{aligned}
& \mathcal{L}_{S}=g_{\chi}^{S} \bar{\chi} \chi S+\sum_{q} g_{q}^{S} \bar{q} q S \\
& \mathcal{L}_{P}=i g_{\chi}^{P} \bar{\chi} \gamma_{5} \chi P+\sum_{q} g_{q}^{P} \bar{q} \gamma_{5} q P \\
& \mathcal{L}_{V}=\bar{\chi} \gamma_{\mu}\left[g_{\chi}^{V}-g_{\chi}^{A} \gamma_{5}\right] \chi V^{\mu}+\sum_{q} \bar{q} \gamma_{\mu}\left[g_{q}^{V}-g_{q}^{A} \gamma_{5}\right] q V^{\mu}
\end{aligned}
$$

Types of simplified DM models: The s-channel case

Assumption: $\mathrm{DM}(\chi)$ is a singlet under $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ and..

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Possible Lagrangians with a seatar or vector mediator:

$$
\mathcal{L}_{S}=g_{\chi}^{S} \bar{\chi} \chi S+\sum_{q} g_{q}^{S} \bar{q} q S
$$

$$
\begin{aligned}
& \text { In this talk } \mathcal{L}_{P}=i g_{\chi}^{P} \bar{\chi} \gamma_{5} \chi P+\sum_{q} g_{q}^{P} \bar{q} \gamma_{5} q P \\
& >_{\mathcal{L} V}=\bar{\chi} \gamma_{\mu}\left[g_{\chi}^{V}-g_{\chi}^{A} \gamma_{5}\right] \chi V^{\mu}+\sum_{q} \bar{q} \gamma_{\mu}\left[g_{q}^{V}-g_{q}^{A} \gamma_{5}\right] q V^{\mu}
\end{aligned}
$$

Types of simplified DM models: The s-channel case

Assumption: $\mathrm{DM}(\chi)$ is a singlet under $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ and..

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Interaction Lagrangian for a vector mediator:

$$
\mathcal{L}_{V}=\bar{\chi} \gamma_{\mu}\left[g_{\chi}^{V}-g_{\chi}^{A} \gamma_{5}\right] \chi V^{\mu}+\sum_{q} \bar{q} \gamma_{\mu}\left[g_{q}^{V}-g_{q}^{A} \gamma_{5}\right] q V^{\mu}
$$

with q : quark fields, χ : DM field, V^{μ} : vector mediator field, g^{V}, g^{A} : vector and axialvector couplings

Properties

- V is uncoloured and massive (M_{V})
- Added to SM by sponanenously broken $\mathrm{U}(1)$ ' symmetry to generate V mass
- Decays only into SM or DM pairs

Types of simplified DM models: The s-channel case

Assumption: $\mathrm{DM}(\chi)$ is a singlet under $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ and..

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Interaction Lagrangian for a vector mediator:

$$
\mathcal{L}_{V}=\bar{\chi} \gamma_{\mu}\left[g_{\chi}^{V}-g_{\chi}^{A} \gamma_{5}\right] \chi V^{\mu}+\sum_{q} \bar{q} \gamma_{\mu}\left[g_{q}^{V}-g_{q}^{A} \gamma_{5}\right] q V^{\mu}
$$

with q : quark fields, χ : DM field, V^{μ} : vector mediator field, g^{V}, g^{A} : vector and axialvector couplings

Properties

- V is uncoloured and massive (M_{V})
- Added to SM by sponanenously broken $\mathrm{U}(1)$ ' symmetry to generate V mass
- Decays only into SM or DM pairs
- $g_{X}^{V / A}=g_{q}^{V / A}=0.5$ so that $\frac{\Gamma_{V}}{M_{V}}<0.5$

In this talk

Types of simplified DM models: The t-channel case

Assumption: $\mathrm{DM}(\chi)$ is a singlet under $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ and..

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Types of simplified DM models: The t-channel case

Assumption: $\mathrm{DM}(\chi)$ is a singlet under $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ and..

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Interaction Lagrangian for a coloured scalar mediator:

$$
\mathcal{L}_{\tilde{Q}}=-\left[\lambda_{Q_{L}} \bar{\chi} P_{L} \tilde{Q}_{L}^{\dagger} \cdot Q+\lambda_{u_{R}} \tilde{Q}_{u_{R}}^{*} \bar{\chi} P_{R} u+\lambda_{d_{R}} \tilde{Q}_{d_{R}}^{*} \bar{\chi} P_{R} d+\text { h.c. }\right]
$$

with $\tilde{Q}_{L}=\binom{\tilde{Q}_{u_{L}}}{\tilde{Q}_{d_{L}}}$ an $S U(2) \times U(1)$ doublet

Types of simplified DM models: The t-channel case

Assumption: $\mathrm{DM}(\chi)$ is a singlet under $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ and ...

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Interaction Lagrangian for a coloured scalar mediator:

$$
\begin{aligned}
\mathcal{L}_{\tilde{Q}}=- & {\left[\lambda_{Q_{L}}\left(\tilde{Q}_{u_{L}}^{*} \bar{\chi} P_{L} u+\tilde{Q}_{d_{L}}^{*} \bar{\chi} P_{L} d\right)\right.} \\
& \left.+\lambda_{u_{R}} \tilde{Q}_{u_{R}}^{*} \bar{\chi} P_{R} u+\lambda_{d_{R}} \tilde{Q}_{d_{R}}^{*} \bar{\chi} P_{R} d+\text { h.c. }\right]
\end{aligned}
$$

with u, d : up- and down-type quark fields, χ : DM field, $\tilde{Q}_{q_{L / R}}$: coloured scalar mediator fields ("squarks"),
λ : DM-quark-squark Yukawa couplings, $P_{L / R}$: left- and right-handed chirality projectors

Properties

- \tilde{Q} are coloured and flavoured (12 squarks)
- Heavier than χ so that the decay

$$
\tilde{Q} \rightarrow q X \text { is possible }\left(M_{\tilde{Q}}>m_{X}\right)
$$

Types of simplified DM models: The t-channel case

Assumption: $\mathrm{DM}(\chi)$ is a singlet under $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ and ...

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Interaction Lagrangian for a coloured scalar mediator:

$$
\begin{aligned}
\mathcal{L}_{\tilde{Q}}=- & {\left[\lambda_{Q_{L}}\left(\tilde{Q}_{u_{L}}^{*} \bar{\chi} P_{L} u+\tilde{Q}_{d_{L}}^{*} \bar{\chi} P_{L} d\right)\right.} \\
& \left.+\lambda_{u_{R}} \tilde{Q}_{u_{R}}^{*} \bar{\chi} P_{R} u+\lambda_{d_{R}} \tilde{Q}_{d_{R}}^{*} \bar{\chi} P_{R} d+\text { h.c. }\right]
\end{aligned}
$$

with u, d : up- and down-type quark fields, χ : DM field, $\tilde{Q}_{q_{L / R}}$: coloured scalar mediator fields ("squarks"),
λ : DM-quark-squark Yukawa couplings, $P_{L / R}$: left- and right-handed chirality projectors

Properties

- \tilde{Q} are coloured and flavoured (12 squarks)
- Heavier than χ so that the decay $\tilde{Q} \rightarrow q \chi$ is possible ($M_{\tilde{Q}}>m_{\chi}$)
- $\lambda_{Q_{L}}=\lambda_{u_{R}}=\lambda_{d_{R}}=1$ for simplicity In this talk

NLO QCD corrections in the simplified models

s-channel

Virtuals calculated with FeynArts/FormCalc
[Hahn, Perez-Victoria '98-00]

Reals calculated with MadGraph 4

[Murayama et al., Stelzer et al., Alwall et al. '92-'O7]
 diagrams due to coloured \tilde{Q}

NLO QCD corrections in the simplified models

s-channel

Virtuals calculated with FeynArts/FormCalc [Hahn, Perez-Victoria '98-00]
Reals calculated with MadGraph 4
[Murayama et al., Stelzer et al., Alwall et al. '92-'07]

Analogous to above, more loop diagrams due to coloured \tilde{Q}

Subtlety in real corrections:

- Intermediate \tilde{Q} can become resonant
- Corresponds to on-shell Q̃ production followed by \tilde{Q} decay \Rightarrow actually a different Born process
- Resonance needs to be subtracted to keep the perturbative series meaningful

Follow on-shell subtraction method from [Baglio, Jäger, Kesenheimer '16-17]

NLO QCD corrections in the simplified models

s-channel

Virtuals calculated with FeynArts/FormCalc
[Hahn, Perez-Victoria '98-00]
Reals calculated with MadGraph 4
[Murayama et al., Stelzer et al., Alwall et al. '92-'O7]

Subtlety in real corrections:

- Intermediate \tilde{Q} can become resonant
- Corresponds to on-shell Q̃ production followed by \tilde{Q} decay \Rightarrow actually a different Born process
- Resonance needs to be subtracted to keep the perturbative series meaningful

Follow on-shell subtraction method from [Baglio, Jäger, Kesenheimer '16-17]

Tools and numerical setup

Roadmap of the calculation:

- Generate points in MSSM parameter space

Spectrum generator: SPheno 4.0. 3 [Porod '03; Porod, Staub '12]

CMSSM[Adeel Ajaib, Gogoladze '17]	pMSSM10 [de Vries et al. '15]	
$M_{0} \in[0,10] \mathrm{TeV}$	$M_{1} \in[-1,1] \mathrm{TeV}$	$M_{2} \in[0,4] \mathrm{TeV}$
$m_{1 / 2} \in[0,10] \mathrm{TeV}$	$M_{3} \in[-4,4] \mathrm{TeV}$	$m_{\tilde{q}_{1 / 2}} \in[0,4] \mathrm{TeV}$
$A_{0} \in[-3,3] \times M_{0}$	$m_{\tilde{q}_{3}} \in[0,4] \mathrm{TeV}$	$m_{\tilde{l}} \in[0,2] \mathrm{TeV}$
$\tan \beta \in[2,60]$	$M_{A} \in[0,4] \mathrm{TeV}$	$A \in[-5,5] \mathrm{TeV}$
$\operatorname{sign} \mu>0$	$\mu \in[-5,5] \mathrm{TeV}$	$\tan \beta \in[1,60]$

5000 points where $\tilde{\chi}_{1}^{0}$ is the LSP and the lightest Higgs mass satisfies $124 \mathrm{GeV} \leq m_{h} \leq 126 \mathrm{GeV}$

- Fix parameters of s - and t-channel models Choose: $m_{\chi}=m_{\tilde{\chi}_{1}^{0}}, M_{V}=1 \mathrm{TeV}$ and $10 \mathrm{TeV}, M_{\tilde{Q}}=$ average of $\tilde{u}_{L / R}, \tilde{d}_{L R}, \tilde{c}_{L / R}, \tilde{S}_{L / R}, \tilde{b}_{1 / 2}$ masses, $g_{X}^{V / A}=g_{q}^{V / A}=g=0.5, \lambda_{Q_{L}}=\lambda_{u_{R}}=\lambda_{d_{R}}=\lambda=1$
- Calculate $p p \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ cross section in MSSM for each point POWHEG - BOX [Alioli, Nason, Oleari, Re '10] with weakino code [Baglio, Jäger, Kesenheimer '16]
- Calculate $p p \rightarrow \chi \bar{\chi}$ cross section in SDMMs for each point POWHEG-BOX and for the t-channel model COLLIER-1. 2 [Denner, Dittmaier, Hofer ' 17$]$

Tools and numerical setup

Roadmap of the calculation:

- Generate points in MSSM parameter space

Spectrum generator: SPheno 4.0. 3 [Porod '03; Porod, Staub '12]

CMSSM [Adeel Ajaib, Gogoladze '17]	pMSSM10 [de Vries et al. '15]	
$M_{0} \in[0,10] \mathrm{TeV}$	$M_{1} \in[-1,1] \mathrm{TeV}$	$M_{2} \in[0,4] \mathrm{TeV}$
$m_{1 / 2} \in[0,10] \mathrm{TeV}$	$M_{3} \in[-4,4] \mathrm{TeV}$	$m_{\tilde{q}_{1 / 2}} \in[0,4] \mathrm{TeV}$
$A_{0} \in[-3,3] \times M_{0}$	$m_{\tilde{q}_{3}} \in[0,4] \mathrm{TeV}$	$m_{\tilde{l}} \in[0,2] \mathrm{TeV}$
$\tan \beta \in[2,60]$	$M_{A} \in[0,4] \mathrm{TeV}$	$A \in[-5,5] \mathrm{TeV}$
$\operatorname{sign} \mu>0$	$\mu \in[-5,5] \mathrm{TeV}$	$\tan \beta \in[1,60]$

5000 points where $\tilde{\chi}_{1}^{0}$ is the LSP and the lightest Higgs mass satisfies $124 \mathrm{GeV} \leq m_{h} \leq 126 \mathrm{GeV}$

- Fix parameters of s - and t-channel models Choose: $m_{\chi}=m_{\tilde{\chi}_{1}^{0}}, M_{V}=1 \mathrm{TeV}$ and $10 \mathrm{TeV}, M_{\tilde{Q}}=$ average of $\tilde{u}_{L / R}, \tilde{d}_{L R}, \tilde{c}_{L / R}, \tilde{S}_{L R}, \tilde{b}_{1 / 2}$ masses, $g_{\chi}^{V / A}=g_{q}^{V / A}=g=0.5, \lambda_{Q_{L}}=\lambda_{u_{R}}=\lambda_{d_{R}}=\lambda=1$
- Calculate pp $\rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ cross section in MSSM for each point POWHEG - BOX [Alioli, Nason, Oleari, Re '10] with weakino code [Baglio, Jäger, Kesenheimer '16]
- Calculate pp $\rightarrow \chi \bar{\chi}$ cross section in SDMMs for each point POWHEG-BOX and for the t-channel model COLLIER-1. 2 [Denner, Dittmaier, Hofer ' 17$]$

Parameter scan in the CMSSM

Ratios with respect to MSSM at NLO QCD

- Ratio involving s-channel model varies by several orders of magnitude
- Ratio involving t-channel model almost constant (\sim factor 3)
- Effect at high M_{0} and intermediate $m_{1 / 2}$ due to "higgsino mixing matrix suppression" in MSSM $\Rightarrow \sigma_{\text {MSSM }}$ low
[CB, Coniglio, Jäger; in preparation]
C. Borschensky - DM in MSSM \& SDMMS

Parameter scan in the CMSSM

[CB, Coniglio, Jäger; in preparation]
C. Borschensky - DM in MSSM \& SDMMS

Parameter scan in the pMSSM10

\tilde{X}_{1}^{0} composition

- Distinguish between $\tilde{b i n o}, \tilde{w}$ ino, \tilde{h} iggsino
- Pure bino/wino: no Z exchange possible

Parameter scan in the pMSSM10

Parameter scan in the pMSSM10

Distributions for a pMSSM10 parameter point: run 1

[CB, Coniglio, Jäger, in preparation]

Analysis including parton shower

- $\tilde{\chi}_{1}^{0}$ mainly \tilde{w} ino, $D M$ mass $\sim 220 \mathrm{GeV}$, squark masses $\sim 3 \mathrm{TeV}$
- t-channel very close to MSSM, agreement with s-channel $\left(M_{V}=1 \mathrm{TeV}\right)$ is worst
- s - and t-channel almost indistinguishable in some regions of $M_{2 \chi}$ and $p_{T, 2 \chi}$

C. Borschensky - DM in MSSM \& SDMMs

Distributions for a pMSSM10 parameter point: run 2

Analysis including parton shower

- \tilde{X}_{1}^{0} mainly $\tilde{\text { bino }}$, DM mass $\sim 850 \mathrm{GeV}$, squark masses $\sim 2.5 \mathrm{TeV}$
- t-channel close to MSSM, Majorana case better than Dirac
- Bump around $p_{T, 2 \chi} \approx 1.25 \mathrm{TeV}$ remnant of on-shell subtraction procedure

C. Borschensky - DM in MSSM \& SDMMs

Distributions for a pMSSM10 parameter point: run 3

[CB, Coniglio, Jäger, in preparation]

Analysis including parton shower

- \tilde{X}_{1}^{0} mainly $\tilde{\text { wino-higgsino, }}$ DM mass $\sim 180 \mathrm{GeV}$, squark masses $\sim 3.4 \mathrm{TeV}$
- No agreement between simplified models and MSSM for $M_{2 \chi}$ and $p_{T, 2 \chi}$ distributions

Distributions for a pMSSM10 parameter point: run 4

Analysis including parton shower

- \tilde{X}_{1}^{0} mainly \tilde{h} iggsino-mix, DM mass $\sim 290 \mathrm{GeV}$, squark masses $\sim 1.8 \mathrm{TeV}$
- No agreement between simplified models and MSSM for $M_{2 \chi}$ distribution
- Good agreement with s-channel $\left(M_{V}=1 \mathrm{TeV}\right)$ for $p_{T, 2 \chi}$ distribution
C. Borschensky - DM In MSSM \& SDMMs

Summary and conclusions

SDMMs: studying DM at the LHC with a minimal set of parameters

Summary and conclusions

SDMMs: studying DM at the LHC with a minimal set of parameters

Two specific models studied:

- s-channel model with a vector mediator, and t-channel model with coloured and flavoured scalar mediators
- NLO QCD corrections including PS calculated for DM pair-production and implemented in the POWHEG-BOX framework

Summary and conclusions

SDMMs: studying DM at the LHC with a minimal set of parameters

Two specific models studied:

- s-channel model with a vector mediator, and t-channel model with coloured and flavoured scalar mediators
- NLO QCD corrections including PS calculated for DM pair-production and implemented in the POWHEG-BOX framework

Comparison with $\tilde{\chi}_{1}^{0}$ pair-production in the MSSM:

- Simplified models can reproduce some MSSM features, in particular the t-channel model with only three parameters ($m_{\chi}, M_{\tilde{Q}}, \lambda$)
- However, poor agreement for studied models in several other regions
- Require more complex models, or SDMMs better suited for description of some other non-SUSY theory?

Summary and conclusions

SDMMs: studying DM at the LHC with a minimal set of parameters

Two specific models studied:

- s-channel model with a vector mediator, and t-channel model with coloured and flavoured scalar mediators
- NLO QCD corrections including PS calculated for DM pair-production and implemented in the POWHEG-BOX framework

Comparison with $\tilde{\chi}_{1}^{0}$ pair-production in the MSSM:

- Simplified models can reproduce some MSSM features, in particular the t-channel model with only three parameters ($m_{\chi}, M_{\tilde{Q}}, \lambda$)
- However, poor agreement for studied models in several other regions
- Require more complex models, or SDMMs better suited for description of some other non-SUSY theory?

THANK YOU FOR YOUR ATTENTION! ;
C. Borschensky - DM in MSSM \& SDMMs

