DARK MATTER PAIR-PRODUCTION IN THE MSSM AND SDMMS AT THE LHC

Christoph Borschensky

Institute of Theoretical Physics, University of Tübingen

Based on work in progress in collaboration with Gabriele Coniglio and Barbara Jäger

DESY Theory Workshop

PARTICLE PHYSICS CHALLENGES.

Hamburg, 27 September 2018

Outline

Motivation

Dark matter and the search for it Supersymmetry

2 Simplified dark matter models s-channel models t-channel models NLO QCD corrections

3 Comparison of MSSM and SDMMs

4 Summary

What today's universe is made of

 \sim 5% visible, atomic matter

C. Borschensky – DM IN MSSM & SDMMs

TÜBINGEN

What today's universe is made of

C. Borschensky – DM IN MSSM & SDMMs

Motivation

Motivation

Motivation

Motivation

Simplified dark matter models

Summary

The dark matter model space

The dark matter model space

Intermission: What is Supersymmetry?

Supersymmetry connects bosonic and fermionic degrees of freedom

Squarks
 Sleptons
 Gluino
 Neutralinos
 & charginos

C. Borschensky - DM IN MSSM & SDMMs

- New set of "mirrored" particles
- Possible solutions to several theoretical and experimental problems (e.g. hierarchy problem, grand unification, dark matter)
- Broken symmetry: $M_{SUSY} \gg M_{SM}$
- R-parity: SUSY particles are odd, SM particles are even
 - ⇒ Lightest supersymmetric particle (LSP) is stable (DM candidate)
- Neutralinos are mixed states of interaction eigenstates of EW fields:

$$\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}_3 + N_{13}\tilde{h}_1 + N_{14}\tilde{h}_2$$

Intermission: What is Supersymmetry?

Supersymmetry connects bosonic and fermionic degrees of freedom

Supersymmetric partners Squarks Sleptons Gluino Neutralinos

New set of "mirrored" particles

- Possible solutions to several theoretical and experimental problems (e.g. hierarchy problem, grand unification, dark matter)
- Broken symmetry: $M_{SUSY} \gg M_{SM}$
- R-parity: SUSY particles are odd, SM particles are even
 - ⇒ Lightest supersymmetric particle (LSP) is stable (DM candidate)
- Neutralinos are mixed states of interaction eigenstates of EW fields:

 $\tilde{\chi}_1^0 = N_{11} \tilde{B} + N_{12} \tilde{W}_3 + N_{13} \tilde{h}_1 + N_{14} \tilde{h}_2$

C. Borschensky – DM IN MSSM & SDMMs

Different detection channels for DM

DM-nucleus interactions

- Searches for candidates in direct
 DM-nucleus scattering at e.g. the CRESST or XENON experiments
- Very low number of events expected per year

Different detection channels for DM

- If DM is light enough, it can be produced at colliders
- Missing E_T signatures

collider production

indirect detection

DM annihilation

 Searches for excesses in γ-rays, antiparticles, high-energy νs

How well does χ -pair production at the LHC agree in SDMMs and the MSSM?

DM-nucleus interactions

- Searches for candidates in direct
 DM-nucleus scattering at e.g. the CRESST or XENON experiments
- Very low number of events expected per year

Assumption: DM (χ) is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Assumption: DM (χ) is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Possible Lagrangians with a scalar or vector mediator:

$$\begin{split} \mathcal{L}_{S} &= g_{\chi}^{S} \bar{\chi} \chi S + \sum_{q} g_{q}^{S} \bar{q} q S \\ \mathcal{L}_{P} &= i g_{\chi}^{P} \bar{\chi} \gamma_{5} \chi P + \sum_{q} g_{q}^{P} \bar{q} \gamma_{5} q P \\ \mathcal{L}_{V} &= \bar{\chi} \gamma_{\mu} \Big[g_{\chi}^{V} - g_{\chi}^{A} \gamma_{5} \Big] \chi V^{\mu} + \sum_{q} \bar{q} \gamma_{\mu} \Big[g_{q}^{V} - g_{q}^{A} \gamma_{5} \Big] q V^{\mu} \end{split}$$

Assumption: DM (χ) is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Possible Lagrangians with a sealar or vector mediator:

$$\mathcal{L}_{S} = g_{\chi}^{S} \bar{\chi} \chi S + \sum_{q} g_{q}^{S} \bar{q} q S$$

$$\begin{array}{c} \text{In this talk} \\ \mathcal{L}_{P} = i g_{\chi}^{P} \bar{\chi} \gamma_{5} \chi P + \sum_{q} g_{q}^{P} \bar{q} \gamma_{5} q P \\ \mathcal{L}_{V} = \bar{\chi} \gamma_{\mu} \Big[g_{\chi}^{V} - g_{\chi}^{A} \gamma_{5} \Big] \chi V^{\mu} + \sum_{q} \bar{q} \gamma_{\mu} \Big[g_{q}^{V} - g_{q}^{A} \gamma_{5} \Big] q V^{\mu} \end{array}$$

Assumption: DM (χ) is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Interaction Lagrangian for a vector mediator:

$$\mathcal{L}_{V} = \bar{\chi}\gamma_{\mu} \left[\frac{g_{\chi}^{V}}{g} - \frac{g_{\chi}^{A}}{g}\gamma_{5} \right] \chi V^{\mu} + \sum_{q} \bar{q}\gamma_{\mu} \left[g_{q}^{V} - g_{q}^{A}\gamma_{5} \right] q V^{\mu}$$

with q: quark fields, χ : DM field, V^{μ} : vector mediator field, g^{V} , g^{A} : vector and axialvector couplings

Properties

- V is uncoloured and massive (M_V)
- Added to SM by sponanenously broken U(1)' symmetry to generate V mass
- Decays only into SM or DM pairs

Types of simplified DM models: The s-channel case

Assumption: DM (χ) is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Interaction Lagrangian for a vector mediator:

$$\mathcal{L}_{V} = \bar{\chi}\gamma_{\mu} \Big[\frac{g_{\chi}^{V} - g_{\chi}^{A}\gamma_{5}}{\chi} \nabla^{\mu} + \sum_{q} \bar{q}\gamma_{\mu} \Big[g_{q}^{V} - g_{q}^{A}\gamma_{5} \Big] q V^{\mu}$$

with q: quark fields, χ : DM field, V^{μ} : vector mediator field, g^{V} , g^{A} : vector and axialvector couplings

Properties

- V is uncoloured and massive (M_V)
- Added to SM by sponanenously broken U(1)' symmetry to generate V mass
- Decays only into SM or DM pairs

•
$$g_{\chi}^{V/A} = g_q^{V/A} = 0.5$$
 so that $\frac{\Gamma_V}{M_V} < 0.5$

Assumption: DM (χ) is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Assumption: DM (χ) is a singlet under SU(3)×SU(2)×U(1) and ...

- ... consists of Dirac fermions
- ... interacts with the SM via the topology:

Interaction Lagrangian for a coloured scalar mediator:

$$\mathcal{L}_{\tilde{Q}} = -\left[\lambda_{Q_L}\bar{\chi}P_L\tilde{Q}_L^{\dagger} \cdot Q + \lambda_{u_R}\tilde{Q}_{u_R}^*\bar{\chi}P_Ru + \lambda_{d_R}\tilde{Q}_{d_R}^*\bar{\chi}P_Rd + \text{h.c.}\right]$$

with $\tilde{Q}_L = \begin{pmatrix} \tilde{Q}_{u_L} \\ \tilde{Q}_{d_L} \end{pmatrix}$ an SU(2)×U(1) doublet

Assumption: DM (χ) is a singlet under SU(3)×SU(2)×U(1) and ...

... consists of Dirac fermions

Interaction Lagrangian for a coloured scalar mediator:

$$\mathcal{L}_{\tilde{Q}} = -\left[\lambda_{Q_{L}}\left(\tilde{Q}_{u_{L}}^{*}\bar{\chi}P_{L}u + \tilde{Q}_{d_{L}}^{*}\bar{\chi}P_{L}d\right) + \lambda_{u_{R}}\tilde{Q}_{u_{R}}^{*}\bar{\chi}P_{R}u + \lambda_{d_{R}}\tilde{Q}_{d_{R}}^{*}\bar{\chi}P_{R}d + \text{h.c.}\right]$$

with u, d: up- and down-type quark fields, χ : DM field, $\tilde{Q}_{q_{L/R}}$: coloured scalar mediator fields ("squarks"), λ : DM-quark-squark Yukawa couplings, $P_{L/R}$: left- and right-handed chirality projectors

Properties

- \tilde{Q} are coloured and flavoured (12 squarks)
- Heavier than χ so that the decay $\tilde{Q} \rightarrow q\chi$ is possible $(M_{\tilde{Q}} > m_{\chi})$

Assumption: DM (χ) is a singlet under SU(3)×SU(2)×U(1) and ...

... consists of Dirac fermions

Interaction Lagrangian for a coloured scalar mediator:

$$\mathcal{L}_{\tilde{Q}} = -\left[\lambda_{Q_{L}}\left(\tilde{Q}_{u_{L}}^{*}\bar{\chi}P_{L}u + \tilde{Q}_{d_{L}}^{*}\bar{\chi}P_{L}d\right) + \lambda_{u_{R}}\tilde{Q}_{u_{R}}^{*}\bar{\chi}P_{R}u + \lambda_{d_{R}}\tilde{Q}_{d_{R}}^{*}\bar{\chi}P_{R}d + \text{h.c.}\right]$$

with u, d: up- and down-type quark fields, χ : DM field, $\tilde{Q}_{q_{L/R}}$: coloured scalar mediator fields ("squarks"), λ : DM-quark-squark Yukawa couplings, $P_{L/R}$: left- and right-handed chirality projectors

NLO QCD corrections in the simplified models

NLO QCD corrections in the simplified models

Subtlety in real corrections:

- Intermediate Q̃ can become resonant
- Corresponds to on-shell Q̃ production followed by Q̃ decay ⇒ actually a different Born process
- Resonance needs to be subtracted to keep the perturbative series meaningful

Follow on-shell subtraction method from [Baglio, Jäger, Kesenheimer 16-17]

NLO QCD corrections in the simplified models

Tools and numerical setup

Roadmap of the calculation:

 Generate points in MSSM parameter space Spectrum generator: SPheno 4.0.3 [Porod '03; Porod, Staub '12]

CMSSM [Adeel Ajaib, Gogoladze 17]	pMSSM10 [de Vries et al. 15]	
$M_0 \in [0, 10]$ TeV	$M_1 \in [-1, 1]$ TeV	$M_2 \in [0, 4]$ TeV
$m_{1/2} \in [0, 10]$ TeV	$M_3 \in [-4, 4]$ TeV	$m_{\tilde{q}_{1/2}} \in [0, 4]$ TeV
$A_0 \in [-3,3] \times M_0$	$m_{\tilde{q}_3} \in [0, 4]$ TeV	$m_{\tilde{l}} \in [0, 2]$ TeV
tanβ∈[2,60]	$M_A \in [0, 4]$ TeV	A ∈ [-5, 5] TeV
$\operatorname{sign} \mu > 0$	$\mu \in [-5, 5]$ TeV	$\tan\beta\in[1,60]$

5000 points where $\tilde{\chi}_1^0$ is the LSP and the lightest Higgs mass satisfies 124 GeV $\leq m_h \leq$ 126 GeV

► Fix parameters of s- and t-channel models Choose: $m_{\chi} = m_{\tilde{\chi}_{1}^{0}}, M_{V} = 1$ TeV and 10 TeV, $M_{\tilde{Q}} =$ average of $\tilde{u}_{L/R}, \tilde{d}_{L/R}, \tilde{c}_{L/R}, \tilde{s}_{L/R}, \tilde{b}_{1/2}$ masses, $g_{\chi}^{V/A} = g_{q}^{V/A} = g = 0.5, \lambda_{Q_{L}} = \lambda_{u_{R}} = \lambda_{d_{R}} = \lambda = 1$

10

- ► Calculate $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ cross section in MSSM for each point POWHEG-BOX [Alioli, Nason, Oleari, Re 10] with weakino code [Baglio, Jäger, Kesenheimer 16]
- ► Calculate $pp \rightarrow \chi\bar{\chi}$ cross section in SDMMs for each point POWHEG-BOX and for the *t*-channel model COLLIER-1.2 [Denner, Dittmaier, Hofer 17]

LHC at \sqrt{S} = 13 TeV, PDFs used: PDF4LHC15 NLO MC PDFs [Butterworth et al. 16]

C. Borschensky – DM IN MSSM & SDMMs

Tools and numerical setup

Roadmap of the calculation:

 Generate points in MSSM parameter space Spectrum generator: SPheno 4.0.3 [Porod '03; Porod, Staub '12]

CMSSM [Adeel Ajaib, Gogoladze 17]	pMSSM10 [de Vries et al. 15]	
$M_0 \in [0, 10]$ TeV	$M_1 \in [-1, 1]$ TeV	$M_2 \in [0, 4]$ TeV
$m_{1/2} \in [0, 10]$ TeV	$M_3 \in [-4, 4]$ TeV	$m_{\tilde{q}_{1/2}} \in [0, 4]$ TeV
$A_0 \in [-3,3] \times M_0$	$m_{\tilde{q}_3} \in [0, 4]$ TeV	$m_{\tilde{l}} \in [0, 2]$ TeV
tanβ∈[2,60]	$M_A \in [0, 4]$ TeV	$A \in [-5, 5]$ TeV
$\operatorname{sign} \mu > 0$	$\mu \in [-5, 5]$ TeV	$\tan\beta\in[1,60]$

5000 points where $\tilde{\chi}_1^0$ is the LSP and the lightest Higgs mass satisfies 124 GeV $\leq m_h \leq$ 126 GeV

- ► Fix parameters of s- and t-channel models Choose: $m_{\chi} = m_{\tilde{\chi}_{1}^{0}}, M_{V} = 1$ TeV and 10 TeV, $M_{\tilde{Q}} =$ average of $\tilde{u}_{L/R}, \tilde{d}_{L/R}, \tilde{c}_{L/R}, \tilde{s}_{L/R}, \tilde{b}_{1/2}$ masses, $g_{\chi}^{V/A} = g_{q}^{V/A} = g = 0.5, \lambda_{Q_{L}} = \lambda_{u_{R}} = \lambda_{d_{R}} = \lambda = 1$
- ► Calculate $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ cross section in MSSM for each point POWHEG-BOX [Alioli, Nason, Oleari, Re 10] with weakino code [Baglio, Jäger, Kesenheimer 16]
- ► Calculate $pp \rightarrow \chi\bar{\chi}$ cross section in SDMMs for each point POWHEG-BOX and for the *t*-channel model COLLIER-1.2 [Denner, Dittmaier, Hofer 17]

LHC at \sqrt{S} = 13 TeV, PDFs used: PDF4LHC15 NLO MC PDFs [Butterworth et al. 16]

C. Borschensky – DM IN MSSM & SDMMs

10

Parameter scan in the CMSSM

Parameter scan in the CMSSM

C. Borschensky – DM IN MSSM & SDMMs

Parameter scan in the pMSSM10

[CB, Coniglio, Jäger; in preparation]

$ilde{\chi}^0_1$ composition

- Distinguish between \tilde{b} ino, \tilde{w} ino, \tilde{h} iggsino
- Pure bino/wino: no Z exchange possible

Motivation

Parameter scan in the pMSSM10

Motivation

Parameter scan in the pMSSM10

Distributions for a pMSSM10 parameter point: run 1

- $\tilde{\chi}_1^0$ mainly \tilde{w} ino, DM mass ~ 220 GeV, squark masses ~ 3 TeV
- t-channel very close to MSSM, agreement with s-channel (M_V = 1 TeV) is worst
- **s** and t-channel almost indistinguishable in some regions of M_{2x} and $p_{T,2x}$

Distributions for a pMSSM10 parameter point: run 2

- $\tilde{\chi}_1^0$ mainly \ddot{b} ino, DM mass ~ 850 GeV, squark masses ~ 2.5 TeV
- t-channel close to MSSM, Majorana case better than Dirac
- Bump around $p_{T,2\chi} \approx 1.25$ TeV remnant of on-shell subtraction procedure

Motivation

Distributions for a pMSSM10 parameter point: run 3

- $\tilde{\chi}_1^0$ mainly \tilde{w} ino- \tilde{h} iggsino, DM mass ~ 180 GeV, squark masses ~ 3.4 TeV
- No agreement between simplified models and MSSM for M₂χ and p_{7,2}χ distributions

Distributions for a pMSSM10 parameter point: run 4

- $\tilde{\chi}_1^0$ mainly \tilde{h} iggsino-mix, DM mass ~ 290 GeV, squark masses ~ 1.8 TeV
- No agreement between simplified models and MSSM for M_{2x} distribution
- Good agreement with s-channel ($M_V = 1$ TeV) for $p_{T,2x}$ distribution

SDMMs: studying DM at the LHC with a minimal set of parameters

C. Borschensky – DM IN MSSM & SDMMs 17

SDMMs: studying DM at the LHC with a minimal set of parameters

Two specific models studied:

- ► *s*-channel model with a vector mediator, and *t*-channel model with coloured and flavoured scalar mediators
- NLO QCD corrections including PS calculated for DM pair-production and implemented in the POWHEG-BOX framework

SDMMs: studying DM at the LHC with a minimal set of parameters

Two specific models studied:

- ► *s*-channel model with a vector mediator, and *t*-channel model with coloured and flavoured scalar mediators
- NLO QCD corrections including PS calculated for DM pair-production and implemented in the POWHEG-BOX framework

Comparison with $\tilde{\chi}^0_1$ pair-production in the MSSM:

- Simplified models can reproduce some MSSM features, in particular the t-channel model with only three parameters (m_χ, M_Õ, λ)
- ► However, poor agreement for studied models in several other regions
- Require more complex models, or SDMMs better suited for description of some other non-SUSY theory?

SDMMs: studying DM at the LHC with a minimal set of parameters

Two specific models studied:

- ► *s*-channel model with a vector mediator, and *t*-channel model with coloured and flavoured scalar mediators
- NLO QCD corrections including PS calculated for DM pair-production and implemented in the POWHEG-BOX framework

Comparison with $\tilde{\chi}^0_1$ pair-production in the MSSM:

- Simplified models can reproduce some MSSM features, in particular the t-channel model with only three parameters (m_χ, M_Õ, λ)
- ► However, poor agreement for studied models in several other regions
- Require more complex models, or SDMMs better suited for description of some other non-SUSY theory?

THANK YOU FOR YOUR ATTENTION! 🙄

C. Borschensky – DM IN MSSM & SDMMs

