Integrability in $\mathcal{N}=1$ superconformal gauge theories

Jan Peter Carstensen

DESY Hamburg

26.09.2018

Motivation:

- Dilatation operator in $\mathcal{N}=4$ SYM integrable in the planar limit [Beisert, Dippel, Staudacher, 2004]
- All loop argument for $\mathcal{N}=2$ SCFTs in the gluonic subsector SU(2,1|2) [Pomoni, 2014]

ldea:

- Assume integrability in $\mathcal{N}=4$ SYM
- ullet Compare general ${\cal N}=1$ with ${\cal N}=4$ SYM in supersymmetric perturbation theory

The main statement

- The dilatation operator in the gluonic subsector SU(2,1|1) of any $\mathcal{N}=1$ superconformal gauge theory is integrable in the planar limit up to at least three loops.
- **②** There is a function f such that $(\lambda = g^2 N_c)$

$$\mathcal{D}_{\mathcal{N}=1}(\lambda) = \mathcal{D}_{\mathcal{N}=4}(f(\lambda))$$
.

Main pillars of the argument

Supersymmetric Feynman Graphs

Choice of the Sector Background Field Formalism

The SU(2,1|1) sector

- ullet Intuition: All fields in ${\cal N}=4$ connected to the gauge field by supersymmetry
- Proposal for $\mathcal{N}=2$: Gauge invariant local single trace operators built from $(\phi,\lambda_+,F_{++},D_{+\dot{\alpha}})$ [Pomoni 2014]
- Analogous sector in $\mathcal{N}=1$: $(\lambda_+, \mathcal{F}_{++}, \mathcal{D}_{+\dot{lpha}})$
- Closed by R-charge and spin conservation:

$$\Delta = \frac{r}{2} + j$$
 for operators in this sector $\Delta \ge \frac{r}{2} + j + \frac{1}{2}$ for all other operators

Background field formalism



- ullet Background gauge invariance o improved convergence
- Claim: "new" effective vertices only in UV finite diagrams
- Reminder: Dilatation operator in $d = 4 2\epsilon$:

$$\mathcal{D} = \lim_{\epsilon o 0} \left[2\epsilon \lambda rac{\mathrm{d}}{\mathrm{d}\lambda} \ln \mathcal{Z}_\mathsf{op}(\lambda,\epsilon)
ight]$$

- "New" effective vertices cannot contribute
- Shown in perturbation theory up to three loops

Background field formalism

Structure of "old" vertices very restricted:

• Counterterm relations due to gauge invariance:

$$\sqrt{\mathcal{Z}_{\lambda}}\mathcal{Z}_{V}=1$$

ullet Unique counterterm \mathcal{Z}_λ for vertex- and self-energy corrections

Differences between $\mathcal{N}=4$ and $\mathcal{N}=1$ in this sector encoded in \mathcal{Z}_{λ}

• Relative finite renormalization of λ :

$$f(\lambda) = \lambda + \lambda(\mathcal{Z}_{\lambda,\mathcal{N}=1} - \mathcal{Z}_{\lambda,\mathcal{N}=4})$$

Conclusions

Summary:

- ullet Integrable subsector SU(2,1|1) in any ${\cal N}=1$ superconformal gauge theory
- In particular

$$\mathcal{D}_{\mathcal{N}=1}(\lambda) = \mathcal{D}_{\mathcal{N}=4}(f(\lambda))$$

Future directions:

- Calculate $f(\lambda)$ perturbatively
- Devise an all loop argument