Inversion formula for Defects I: Defect Channel

Pedro Liendo

Sept 27 2018

DESY Theory Workshop

1712.08185 with M. Lemos, M. Meineri, S. Sarkar

Motivation

Renormalization group flow

Renormalization group flow

Renormalization group (RG) flow.

Conformal symmetry is extremely powerful.

Renormalization group flow

Renormalization group (RG) flow.

Conformal symmetry is extremely powerful.

It includes translations, rotations, and scale transformations (+ more)

$$x \to x + a$$
, $x \to R \cdot x$, $x \to hx$.

CFT

Extended objects are important observables in CFT: Wilson and 't Hoft lines, surface operators, boundaries, interfaces, . . .

Extended objects are important observables in CFT: Wilson and 't Hoft lines, surface operators, boundaries, interfaces, . . .

Local operatos in the presence of a defect.

Extended objects are important observables in CFT: Wilson and 't Hoft lines, surface operators, boundaries, interfaces, . . .

Local operatos in the presence of a defect.

We have $SO(1, d+1) \rightarrow SO(1, p+1) \times SO(q)$ where q + p = d.

Defect CFT correlators

The $SO(1, p+1) \times SO(q)$ symmetry preserved by the defect implies that one-point functions are non-zero:

$$\langle \mathcal{O}(x) \rangle = \frac{a_{\mathcal{O}}}{(x^i)^{\Delta}}.$$

Defect CFT correlators

The $SO(1, p+1) \times SO(q)$ symmetry preserved by the defect implies that one-point functions are non-zero:

$$\langle \mathcal{O}(x) \rangle = \frac{a_{\mathcal{O}}}{(x^i)^{\Delta}}.$$

Two-point functions depend on two conformal invariants

$$\langle \phi(x_1)\phi(x_2)\rangle = \frac{1}{(z\bar{z})^{\Delta_{\phi/2}}}g(z,\bar{z}),$$

where $\bar{z} = z^*$ in Euclidean signature

Defect CFT correlators

The $SO(1, p+1) \times SO(q)$ symmetry preserved by the defect implies that one-point functions are non-zero:

$$\langle \mathcal{O}(x) \rangle = \frac{a_{\mathcal{O}}}{(x^i)^{\Delta}}.$$

Two-point functions depend on two conformal invariants

$$\langle \phi(x_1)\phi(x_2)\rangle = \frac{1}{(z\bar{z})^{\Delta_{\phi/2}}}g(z,\bar{z}),$$

where $\bar{z} = z^*$ in Euclidean signature

Remark. Compare with the four-point function in standard CFT.

Two-point function configuration

Configuration of the system in the plane orthogonal to the defect.

Bulk OPE

Bulk channel:

We had

$$\phi(x)\phi(0) \sim \sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}} d(x,\partial)\mathcal{O}(0)$$
.

recall that in the presence of a defect a scalar can have a non-zero one-point function

Bulk OPE

Bulk channel:

We had

$$\phi(x)\phi(0) \sim \sum_{\mathcal{O}} C_{\phi\phi\mathcal{O}} d(x,\partial)\mathcal{O}(0)$$
.

recall that in the presence of a defect a scalar can have a non-zero one-point function

The expansion for the two-point function is

$$\langle \phi(x_1)\phi(x_2)\rangle = \left(\frac{(1-z)(1-\bar{z})}{(z\bar{z})^{1/2}}\right)^{-\Delta_{\phi}} \sum_{\Delta,J} C_{\phi\phi O} a_O f_{\Delta,J}(z,\bar{z})$$

where the sum goes over the bulk spectrum.

Defect OPE

Defect channel:

We can also write a bulk operator as a sum of defect operators

$$\phi(x) = \sum_{\hat{O}} b_{\phi \hat{O}} D(x^i, \partial_{\vec{x}}) \hat{O}(\vec{x})$$

where the "hat" denotes a boundary quantity.

Defect OPE

Defect channel:

We can also write a bulk operator as a sum of defect operators

$$\phi(x) = \sum_{\hat{O}} b_{\phi \hat{O}} D(x^i, \partial_{\vec{x}}) \widehat{O}(\vec{x})$$

where the "hat" denotes a boundary quantity. Plugging this expansion into the two-point function,

$$\langle \phi(x_1)\phi(x_2)\rangle = \sum_{\hat{\Delta},s} b_{\phi \widehat{O}}^2 \, \widehat{f}_{\hat{\Delta},s}(z,\bar{z}) \,.$$

where the sum goes over the boundary spectrum.

Equality of both expansions implies

$$\left(rac{(1-z)(1-ar{z})}{(zar{z})^{1/2}}
ight)^{-\Delta_{\phi}}\sum_{\Delta,J}C_{\phi\phi O}\, a_O\, f_{\Delta,J}(z,ar{z}) = \sum_{\widehat{\Delta}.s}b_{\phi\widehat{O}}^2\, \widehat{f}_{\widehat{\Delta},s}(z,ar{z})$$

Equality of both expansions implies

$$\left(rac{(1-z)(1-ar{z})}{(zar{z})^{1/2}}
ight)^{-\Delta_\phi} \sum_{\Delta,J} C_{\phi\phi O} \, \mathsf{a}_O \, f_{\Delta,J}(z,ar{z}) = \sum_{\widehat{\Delta}.s} b_{\phi \widehat{O}}^2 \, \widehat{f}_{\widehat{\Delta},s}(z,ar{z})$$

Pictorially

$$\sum_{\Delta,J} C_{\phi\phi O} a_O = \sum_{\widehat{\Delta},s} b_{\phi\widehat{O}}^2$$

Equality of both expansions implies

$$\left(\frac{(1-z)(1-\bar{z})}{(z\bar{z})^{1/2}}\right)^{-\Delta_{\phi}} \sum_{\Delta,J} C_{\phi\phi O} \, a_O \, f_{\Delta,J}(z,\bar{z}) = \sum_{\widehat{\Delta},s} b_{\phi \widehat{O}}^2 \, \widehat{f}_{\widehat{\Delta},s}(z,\bar{z})$$

Pictorially

$$\sum_{\Delta,J} c_{\phi\phi O} a_O = \sum_{\widehat{\Delta}.s} b_{\phi\widehat{O}}^2 \qquad \qquad \widehat{O}$$

The defect blocks are known in closed-form.

[Billo, Goncalvez, Lauria, Meineri (2016)]

Equality of both expansions implies

$$\left(\frac{(1-z)(1-\bar{z})}{(z\bar{z})^{1/2}}\right)^{-\Delta_{\phi}} \sum_{\Delta,J} C_{\phi\phi O} \, \mathsf{a}_O \, f_{\Delta,J}(z,\bar{z}) = \sum_{\widehat{\Delta}.s} b_{\phi \widehat{O}}^2 \, \widehat{f}_{\widehat{\Delta},s}(z,\bar{z})$$

Pictorially

The defect blocks are known in closed-form.

[Billo, Goncalvez, Lauria, Meineri (2016)]

The bulk blocks are Calogero-Sutherland wave-functions.

[Isachenkov, PL, Linke, Schomerus (2018)]

Inversion Formula

From Euclidean to Lorentzian

The idea...

$$z = rw$$
, $\bar{z} = \frac{r}{w}$ $g(r, w) = \int b(\hat{\Delta}, s)h(r, w) \rightarrow b(\hat{\Delta}, s) \sim \int g(r, w)\bar{h}(r, w)$

From Euclidean to Lorentzian

The idea...

$$z = rw$$
, $\bar{z} = \frac{r}{w}$ $g(r, w) = \int b(\hat{\Delta}, s)h(r, w) \rightarrow b(\hat{\Delta}, s) \sim \int g(r, w)\bar{h}(r, w)$

Contour deformation from Euclidean to Lorentzian configuration.

Let us consider the limit

$$1-\bar{z}\ll z<1$$

Let us consider the limit

$$1-\bar{z}\ll z<1$$

Bulk operators are suppressed

$$1 = \lim_{\bar{z} \to 1} \left(\frac{(1-z)(1-\bar{z})}{\sqrt{z\bar{z}}} \right)^{\Delta_{\phi}} \sum_{\widehat{\Lambda}, s} b_{\phi \, \widehat{O}}^2 \, \widehat{f}_{\widehat{\tau}, s}(z, \bar{z}) \,.$$

Let us consider the limit

$$1-\bar{z}\ll z<1$$

Bulk operators are suppressed

$$1 = \lim_{\bar{z} \to 1} \left(\frac{(1-z)(1-\bar{z})}{\sqrt{z\bar{z}}} \right)^{\Delta_{\phi}} \sum_{\widehat{n} \in S} b_{\phi \widehat{O}}^2 \, \widehat{f}_{\widehat{\tau},s}(z,\bar{z}) \,.$$

Moreover

$$\lim_{\bar{z}\to 1}(1-\bar{z})^{\Delta_\phi}\widehat{f}_{\widehat{\Delta},s}=0$$

Let us consider the limit

$$1-\bar{z}\ll z<1$$

Bulk operators are suppressed

$$1 = \lim_{\bar{z} \to 1} \left(\frac{(1-z)(1-\bar{z})}{\sqrt{z\bar{z}}} \right)^{\Delta_{\phi}} \sum_{\widehat{\Omega} \in \mathcal{S}} b_{\phi\widehat{\Omega}}^2 \, \widehat{f}_{\widehat{\tau},s}(z,\bar{z}) \,.$$

Moreover

$$\lim_{\bar{z}\to 1}(1-\bar{z})^{\Delta_{\phi}}\widehat{f}_{\widehat{\Delta},s}=0$$

Long story short: we need an infinite number of defect operators.

[Lemos, PL, Meineri, Sarkar (2018)]

Plugging the identity in the inversion formula implies

$$\widehat{\Delta} = \Delta_{\phi} + s + 2m + \mathcal{O}(s^{-\alpha}), \quad s \to \infty,$$

for positive α .

Plugging the identity in the inversion formula implies

$$\widehat{\Delta} = \Delta_{\phi} + s + 2m + \mathcal{O}(s^{-\alpha}), \quad s \to \infty,$$

for positive α .

And also

$$b_{s,m}^2 = s^{\Delta_{\phi}-1} \left(\frac{1}{\Gamma(\Delta_{\phi})} {m - \frac{d}{2} + \Delta_{\phi} \choose m} + \mathcal{O}(s^{-\beta}) \right) , \quad s \to \infty ,$$

for positive β .

Plugging the identity in the inversion formula implies

$$\widehat{\Delta} = \Delta_{\phi} + s + 2m + \mathcal{O}(s^{-\alpha}), \quad s \to \infty,$$

for positive α .

And also

$$b_{s,m}^2 = s^{\Delta_{\phi}-1} \left(\frac{1}{\Gamma(\Delta_{\phi})} {m - \frac{d}{2} + \Delta_{\phi} \choose m} + \mathcal{O}(s^{-\beta}) \right) , \quad s \to \infty ,$$

for positive β .

This result is universal!

• We reviewed the basics of the defect bootstrap program: OPE, crossing symmetry, inversion formula.

- We reviewed the basics of the defect bootstrap program: OPE, crossing symmetry, inversion formula.
- We concentrated on the defect channel and prove universality at large transverse spin s.

- We reviewed the basics of the defect bootstrap program: OPE, crossing symmetry, inversion formula.
- We concentrated on the defect channel and prove universality at large transverse spin s.
- In the next talk Yannick will tell you about the bulk channel!

Thank you!