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Renormalization group flow

UV

IR

Renormalization group (RG) flow.

Conformal symmetry is extremely powerful.

It includes translations, rotations, and scale transformations (+ more)

x → x + a , x → R · x , x → h x .
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CFT
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Defect CFT
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Defect CFT

Extended objects are important observables in CFT: Wilson and ’t
Hoft lines, surface operators, boundaries, interfaces, . . .

O1

O2

Local operatos in the presence of a defect.

We have SO(1, d + 1)→ SO(1, p + 1)× SO(q) where q + p = d .
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Defect CFT correlators

The SO(1, p + 1)× SO(q) symmetry preserved by the defect implies
that one-point functions are non-zero:

〈O(x)〉 =
aO

(x i )∆
.

Two-point functions depend on two conformal invariants

〈φ(x1)φ(x2)〉 =
1

(zz̄)∆φ/2
g(z , z̄) ,

where z̄ = z∗ in Euclidean signature

Remark. Compare with the four-point function in standard CFT.
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Two-point function configuration

b

b

⊗

z
=
0

z
=
1

z̄
=
1

z̄
=
0

z, z̄ = 0
O(1, 1)

O(z, z̄)

defect

Configuration of the system in the plane orthogonal to the defect.
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Bulk OPE

Bulk channel:
We had

φ(x)φ(0) ∼
∑
O

CφφOd(x , ∂)O(0) .

recall that in the presence of a defect a scalar can have a non-zero
one-point function

The expansion for the two-point function is

〈φ(x1)φ(x2)〉 =

(
(1− z)(1− z̄)

(zz̄)1/2

)−∆φ∑
∆,J

CφφO aO f∆,J(z , z̄)

where the sum goes over the bulk spectrum.
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Defect OPE

Defect channel:
We can also write a bulk operator as a sum of defect operators

φ(x) =
∑
Ô

b
φÔ

D(x i , ∂~x)Ô(~x)

where the “hat” denotes a boundary quantity.

Plugging this expansion into the two-point function,

〈φ(x1)φ(x2)〉 =
∑
∆̂,s

b2
φÔ

f̂∆̂,s(z , z̄) .

where the sum goes over the boundary spectrum.
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Crossing symmetry
Equality of both expansions implies(

(1− z)(1− z̄)

(zz̄)1/2

)−∆φ∑
∆,J

CφφO aO f∆,J(z , z̄) =
∑
∆̂,s

b2
φÔ

f̂
∆̂,s

(z , z̄)

Pictorially

∑
∆,J

CφφO aO =
∑
∆̂,s

b2
φÔO

Ô

The defect blocks are known in closed-form.

[Billo, Goncalvez, Lauria, Meineri (2016)]

The bulk blocks are Calogero-Sutherland wave-functions.

[Isachenkov, PL, Linke, Schomerus (2018)]
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Inversion Formula
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From Euclidean to Lorentzian
The idea...

z = rw , z̄ =
r

w

g(r ,w) =

∫
b(∆̂, s)h(r ,w) → b(∆̂, s) ∼

∫
g(r ,w)h̄(r ,w)

w

1-1

1/rr

w

1 1/rr

C+

C-

Contour deformation from Euclidean to Lorentzian configuration.

12 / 16



From Euclidean to Lorentzian
The idea...

z = rw , z̄ =
r

w

g(r ,w) =

∫
b(∆̂, s)h(r ,w) → b(∆̂, s) ∼

∫
g(r ,w)h̄(r ,w)

w

1-1

1/rr

w

1 1/rr

C+

C-

Contour deformation from Euclidean to Lorentzian configuration.

12 / 16



The lightcone bootstrap
Let us consider the limit

1− z̄ � z < 1

Bulk operators are suppressed

1 = lim
z̄→1

(
(1− z)(1− z̄)√

zz̄

)∆φ∑
∆̂,s

b2
φÔ

f̂τ̂ ,s(z , z̄) .

Moreover
lim
z̄→1

(1− z̄)∆φ f̂
∆̂,s

= 0

Long story short: we need an infinite number of defect operators.

[Lemos, PL, Meineri, Sarkar (2018)]
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Universality at large s

Plugging the identity in the inversion formula implies

∆̂ = ∆φ + s + 2m +O(s−α) , s →∞ ,

for positive α.

And also

b2
s,m = s∆φ−1

(
1

Γ(∆φ)

(
m − d

2 + ∆φ

m

)
+O(s−β)

)
, s →∞ ,

for positive β.

This result is universal!
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Summary

We reviewed the basics of the defect bootstrap program: OPE,
crossing symmetry, inversion formula.

We concentrated on the defect channel and prove universality
at large transverse spin s.

In the next talk Yannick will tell you about the bulk channel!
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Thank you!
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	The lightcone bootstrap

