Inversion formula for Defects I: Defect Channel

Pedro Liendo

Sept 272018

DESY Theory Workshop

1712.08185 with M. Lemos, M. Meineri, S. Sarkar

Motivation

Renormalization group flow

Renormalization group (RG) flow.

Renormalization group flow

Conformal symmetry is extremely powerful.

Renormalization group flow

Renormalization group (RG) flow.

Conformal symmetry is extremely powerful.
It includes translations, rotations, and scale transformations (+ more)

$$
x \rightarrow x+a, \quad x \rightarrow R \cdot x, \quad x \rightarrow h x
$$

CFT

Defect CFT

Defect CFT

Extended objects are important observables in CFT: Wilson and 't Hoft lines, surface operators, boundaries, interfaces, ...

Defect CFT

Extended objects are important observables in CFT: Wilson and 't Hoft lines, surface operators, boundaries, interfaces, ...

Local operatos in the presence of a defect.

Defect CFT

Extended objects are important observables in CFT: Wilson and 't Hoft lines, surface operators, boundaries, interfaces, ...

Local operatos in the presence of a defect.

We have $S O(1, d+1) \rightarrow S O(1, p+1) \times S O(q)$ where $q+p=d$.

Defect CFT correlators

The $S O(1, p+1) \times S O(q)$ symmetry preserved by the defect implies that one-point functions are non-zero:

$$
\langle\mathcal{O}(x)\rangle=\frac{a_{\mathcal{O}}}{\left(x^{i}\right)^{\Delta}} .
$$

Defect CFT correlators

The $S O(1, p+1) \times S O(q)$ symmetry preserved by the defect implies that one-point functions are non-zero:

$$
\langle\mathcal{O}(x)\rangle=\frac{a_{\mathcal{O}}}{\left(x^{i}\right)^{\Delta}}
$$

Two-point functions depend on two conformal invariants

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=\frac{1}{(z \bar{z})^{\Delta_{\phi / 2}}} g(z, \bar{z})
$$

where $\bar{z}=z^{*}$ in Euclidean signature

Defect CFT correlators

The $S O(1, p+1) \times S O(q)$ symmetry preserved by the defect implies that one-point functions are non-zero:

$$
\langle\mathcal{O}(x)\rangle=\frac{a_{\mathcal{O}}}{\left(x^{i}\right)^{\Delta}}
$$

Two-point functions depend on two conformal invariants

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=\frac{1}{(z \bar{z})^{\Delta_{\phi / 2}}} g(z, \bar{z}),
$$

where $\bar{z}=z^{*}$ in Euclidean signature
Remark. Compare with the four-point function in standard CFT.

Two-point function configuration

Configuration of the system in the plane orthogonal to the defect.

Bulk OPE

Bulk channel:

We had

$$
\phi(x) \phi(0) \sim \sum_{\mathcal{O}} C_{\phi \phi O} d(x, \partial) O(0)
$$

recall that in the presence of a defect a scalar can have a non-zero one-point function

Bulk OPE

Bulk channel:

We had

$$
\phi(x) \phi(0) \sim \sum_{\mathcal{O}} C_{\phi \phi O} d(x, \partial) O(0)
$$

recall that in the presence of a defect a scalar can have a non-zero one-point function

The expansion for the two-point function is

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=\left(\frac{(1-z)(1-\bar{z})}{(z \bar{z})^{1 / 2}}\right)^{-\Delta_{\phi}} \sum_{\Delta, J} C_{\phi \phi O} a_{O} f_{\Delta, J}(z, \bar{z})
$$

where the sum goes over the bulk spectrum.

Defect OPE

Defect channel:

We can also write a bulk operator as a sum of defect operators

$$
\phi(x)=\sum_{\hat{O}} b_{\phi \widehat{O}} D\left(x^{i}, \partial_{\vec{x}}\right) \widehat{O}(\vec{x})
$$

where the "hat" denotes a boundary quantity.

Defect OPE

Defect channel:

We can also write a bulk operator as a sum of defect operators

$$
\phi(x)=\sum_{\hat{O}} b_{\phi \widehat{O}} D\left(x^{i}, \partial_{\vec{x}}\right) \widehat{O}(\vec{x})
$$

where the "hat" denotes a boundary quantity. Plugging this expansion into the two-point function,

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=\sum_{\hat{\Delta}, s} b_{\phi \widehat{O}}^{2} \widehat{f}_{\hat{\Delta}, s}(z, \bar{z}) .
$$

where the sum goes over the boundary spectrum.

Crossing symmetry

Equality of both expansions implies

$$
\left(\frac{(1-z)(1-\bar{z})}{(z \bar{z})^{1 / 2}}\right)^{-\Delta_{\phi}} \sum_{\Delta, J} C_{\phi \phi O} a_{O} f_{\Delta, J}(z, \bar{z})=\sum_{\widehat{\Delta}, s} b_{\phi \widehat{O}}^{2} \widehat{f}_{\widehat{\Delta}, s}(z, \bar{z})
$$

Crossing symmetry

Equality of both expansions implies

$$
\left(\frac{(1-z)(1-\bar{z})}{(z \bar{z})^{1 / 2}}\right)^{-\Delta_{\phi}} \sum_{\Delta, J} C_{\phi \phi O} a_{O} f_{\Delta, J}(z, \bar{z})=\sum_{\widehat{\Delta}, s} b_{\phi \widehat{O}}^{2} \widehat{f}_{\widehat{\Delta}, s}(z, \bar{z})
$$

Pictorially

Crossing symmetry

Equality of both expansions implies

$$
\left(\frac{(1-z)(1-\bar{z})}{(z \bar{z})^{1 / 2}}\right)^{-\Delta_{\phi}} \sum_{\Delta, J} C_{\phi \phi O} a_{O} f_{\Delta, J}(z, \bar{z})=\sum_{\widehat{\Delta}, s} b_{\phi \widehat{O}}^{2} \widehat{\widehat{\Delta}}_{\widehat{\Delta}, s}(z, \bar{z})
$$

Pictorially

The defect blocks are known in closed-form.
[Billo, Goncalvez, Lauria, Meineri (2016)]

Crossing symmetry

Equality of both expansions implies

$$
\left(\frac{(1-z)(1-\bar{z})}{(z \bar{z})^{1 / 2}}\right)^{-\Delta_{\phi}} \sum_{\Delta, J} C_{\phi \phi O} a_{O} f_{\Delta, J}(z, \bar{z})=\sum_{\widehat{\Delta}, s} b_{\phi \widehat{O}}^{2} \widehat{f}_{\widehat{\Delta}, s}(z, \bar{z})
$$

Pictorially

The defect blocks are known in closed-form.
[Billo, Goncalvez, Lauria, Meineri (2016)]
The bulk blocks are Calogero-Sutherland wave-functions.
[Isachenkov, PL, Linke, Schomerus (2018)]

Inversion Formula

From Euclidean to Lorentzian

The idea...

$$
\begin{gathered}
z=r w, \quad \bar{z}=\frac{r}{w} \\
g(r, w)=\int b(\hat{\Delta}, s) h(r, w) \quad \rightarrow \quad b(\hat{\Delta}, s) \sim \int g(r, w) \bar{h}(r, w)
\end{gathered}
$$

From Euclidean to Lorentzian

The idea...

$$
\begin{aligned}
& z=r w, \bar{z}=\frac{r}{w} \\
& g(r, w)=\int b(\hat{\Delta}, s) h(r, w) \rightarrow \\
& \hline
\end{aligned}
$$

Contour deformation from Euclidean to Lorentzian configuration.

The lightcone bootstrap

Let us consider the limit

$$
1-\bar{z} \ll z<1
$$

The lightcone bootstrap

Let us consider the limit

$$
1-\bar{z} \ll z<1
$$

Bulk operators are suppressed

$$
1=\lim _{\bar{z} \rightarrow 1}\left(\frac{(1-z)(1-\bar{z})}{\sqrt{z \bar{z}}}\right)^{\Delta_{\phi}} \sum_{\widehat{\Delta}, s} b_{\phi \widehat{O}}^{2} \widehat{f}_{\widehat{\tau}, s}(z, \bar{z})
$$

The lightcone bootstrap

Let us consider the limit

$$
1-\bar{z} \ll z<1
$$

Bulk operators are suppressed

$$
1=\lim _{\bar{z} \rightarrow 1}\left(\frac{(1-z)(1-\bar{z})}{\sqrt{z \bar{z}}}\right)^{\Delta_{\phi}} \sum_{\widehat{\Delta}, s} b_{\phi \widehat{O}}^{2} \widehat{f}_{\widehat{\tau}, s}(z, \bar{z})
$$

Moreover

$$
\lim _{\bar{z} \rightarrow 1}(1-\bar{z})^{\Delta_{\phi}} \widehat{f}_{\widehat{\Delta}, s}=0
$$

The lightcone bootstrap

Let us consider the limit

$$
1-\bar{z} \ll z<1
$$

Bulk operators are suppressed

$$
1=\lim _{\bar{z} \rightarrow 1}\left(\frac{(1-z)(1-\bar{z})}{\sqrt{z \bar{z}}}\right)^{\Delta_{\phi}} \sum_{\widehat{\Delta}, s} b_{\phi \widehat{O}}^{2} \widehat{f}_{\widehat{\tau}, s}(z, \bar{z}) .
$$

Moreover

$$
\lim _{\bar{z} \rightarrow 1}(1-\bar{z})^{\Delta_{\phi}} \widehat{f}_{\widehat{\Delta}, s}=0
$$

Long story short: we need an infinite number of defect operators.
[Lemos, PL, Meineri, Sarkar (2018)]

Universality at large s

Universality at large s

Plugging the identity in the inversion formula implies

$$
\widehat{\Delta}=\Delta_{\phi}+s+2 m+\mathcal{O}\left(s^{-\alpha}\right), \quad s \rightarrow \infty
$$

for positive α.

Universality at large s

Plugging the identity in the inversion formula implies

$$
\widehat{\Delta}=\Delta_{\phi}+s+2 m+\mathcal{O}\left(s^{-\alpha}\right), \quad s \rightarrow \infty
$$

for positive α.
And also

$$
b_{s, m}^{2}=s^{\Delta_{\phi}-1}\left(\frac{1}{\Gamma\left(\Delta_{\phi}\right)}\binom{m-\frac{d}{2}+\Delta_{\phi}}{m}+\mathcal{O}\left(s^{-\beta}\right)\right), \quad s \rightarrow \infty
$$

for positive β.

Universality at large s

Plugging the identity in the inversion formula implies

$$
\widehat{\Delta}=\Delta_{\phi}+s+2 m+\mathcal{O}\left(s^{-\alpha}\right), \quad s \rightarrow \infty
$$

for positive α.
And also

$$
b_{s, m}^{2}=s^{\Delta_{\phi}-1}\left(\frac{1}{\Gamma\left(\Delta_{\phi}\right)}\binom{m-\frac{d}{2}+\Delta_{\phi}}{m}+\mathcal{O}\left(s^{-\beta}\right)\right), \quad s \rightarrow \infty
$$

for positive β.
This result is universal!

Summary

Summary

- We reviewed the basics of the defect bootstrap program: OPE, crossing symmetry, inversion formula.

Summary

- We reviewed the basics of the defect bootstrap program: OPE, crossing symmetry, inversion formula.
- We concentrated on the defect channel and prove universality at large transverse spin s.

Summary

- We reviewed the basics of the defect bootstrap program: OPE, crossing symmetry, inversion formula.
- We concentrated on the defect channel and prove universality at large transverse spin s.
- In the next talk Yannick will tell you about the bulk channel!

Thank you!

