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Motivations

Search for “holographic” S-matrix theory: fascinating geometric
structures underlying scattering amplitudes, in some auxiliary space

Mg,n: perturbative string amps = correlators of worldsheet CFT
→ twistor strings & scattering equations, same worldsheet but
without stringy excitations [Witten; CHY; Mason, Skinner; Berkovits...]

G+(k, n) : amplituhedron for N = 4 SYM [Arkani-Hamed et al.]

Both geometries have “factorizing” boundary structures: locality and
unitarity naturally emerge (without referring to the bulk)

What questions to ask, directly in the “kinematic space”, to generate
local, unitary dynamics? Avatar of these geometries?
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Amplitudes as Forms

Scattering amps as differential forms on kinematic space→ a new
picture for amplituhedron [Arkani-Hamed, Thomas, Trnka] & more!

Forms on momentum-twistor space = superamp in N = 4 SYM:
ηi → dZi =⇒ Ω

(4k)
n for NkMHV tree; similarly Ω(2n−4)(λ, λ̃) [w. Zhang]

(tree) Amplituhedron =“positive” region ∩ 4k-dim subspaces
Ω

(4k)
n |subspace = canonical form of positive geometry [Arkani-Hamed, Bai, Lam]

This talk: identical structure for wide variety of theories in any dim:

Bi-adjoint φ3 from kinematic and worldsheet associahedra
YM/NLSM: “geometrizing” color & its duality to kinematics
Real and complex integrals of forms, double-copy & strings?
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Kinematic Space

The kinematic space, Kn, for n massless momenta pi is spanned by
Mandelstam variables si j with

∑
j 6=i si j = 0 ; dimKn = n(n−3)

2 .

Given an ordering (12 · · ·n), planar variables Xi,j := si,i+1,··· ,j−1 dual
to n(n−3)

2 diagonals of a n-gon form a basis of Kn

1
2

3

4
5

6

7

8 s234567

s4567

s456

X2,8

X4,8

X4,7

1

2

3

45

6

7

8

A planar cubic tree graph consists of n− 3 compatible planar
variables as poles, and it is dual to a full triangulation of the n-gon.
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The Associahedron

The associahedron polytope encodes combinatorial “factorization”:
each co-dim d face represent a triangulation with d diagonals or
planar tree with d propagators (vertices↔ planar cubic trees)

Universal factorization structures of any massless tree amps (in
particular φ3), but how to realize it directly in kinematic space?
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Kinematic Associahedron

∆n: all Xi,j ≥ 0 (top-dim cone); Hn: (n−3)-dim subspace defined
by Xi,j +Xi+1,j+1 −Xi,j+1 −Xi+1,j(= −sij) = ci,j as positive constants,
for all non-adjacent 1 ≤ i, j < n. Then An := ∆n ∩ Hn [ABHY]

s+t=c>0

e.g . A4 = {s > 0, t > 0} ∩ {−u = const > 0}

A5 = {s12, · · · , s51 > 0} ∩ {−s13,−s14,−s24 = const > 0}
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Planar Scattering Forms

The planar scattering form for ordering (12 · · ·n) is a sum of rank-(n−3)
d log forms for Catn−2 planar cubic graphs with sign(g) = ±1:

Ω(n−3)
n :=

∑
planar g

sign(g)

n−3∧
a=1

d logXia,ja

with sign(g) = −sign(g′) for any g, g′ related by a mutation
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X1,4 = s123
X2,6 = s2345

Sign-flip rule fixed by projectivity: invariant under local GL(1) transf.
Xi,j → Λ(X)Xi,j (well-defined in a projectivized space)
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Projectivity is equivalent to requiring that the form only depends on
ratios of variables, e.g. Ω

(1)
4 = ds

s −
dt
t = d log s

t and

Ω
(2)
5 = ds12

s12
∧ ds34

s34
+ ds23

s23
∧ ds45

s45
+ · · ·+ ds51

s51
∧ ds23

s23

= d log
X1,3

X2,4
∧ d log

X1,3

X1 4
+ d log

X1,3

X2,5
∧ d log

X3,5

X2,4

Ω
(2)
6 =

∑14
g=1± ∧ (d logX)3 =

∑
± d log ratio′s

It follows immediately that Ω(n−3) is cyclically invariant up to a sign
i→ i+1: Ω

(n−3)
n → (−1)n−3 Ω

(n−3)
n , and it factorizes correctly e.g.

X1,m = s1,··· ,m−1 → 0 : Ωn → Ωm ∧ d logX1,m ∧ Ωn−m+2

Projectivity is a remarkable property of Ω
(n−3)
n , not true for each

diagram or any proper subset of planar Feynman diagrams.
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Canonical Form of An

Unique form of any positive geometry= “volume” of the dual: Ω(A)
has d log singularities on all boundaries ∂A with Res = Ω(∂A)

For simple polytopes:
∑

v ± ∧ d logF for faces F = 0 adjacent to v

Canonical form of An = Pullback of Ωn to Hn ∝ planar φ3 amplitude!

e.g . Ω(A4) = Ω
(1)
4 |H4 = (dss −

dt
t )|−u=c>0 = (1

s + 1
t ) ds

Ω(A5) = Ω
(2)
5 |H5 =

(
1

s12s34
+ · · ·+ 1

s51s23

)
ds12 ∧ ds34

Ω(An) =
∑

sgn(g)

n−3∧
a=1

d logXia,ja = dn−3X m(12 · · ·n|12 · · ·n)

Similarly for m(α|β): “volume” of degenerate An (faces at infinity)
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Triangulations & Recursion Relations for φ3 Amps

Geometric picture: Feynman-diagram expansion = triangulation of
the dual into Catn−2 simplices by introducing the point at ”infinity”

Triangulate the dual or itself in other ways→ new rep. of φ3 amps

Ω(A5) = d2s ( 1
s12s34

+ · · ·+ 1
s51s23

)

= d2s
(
s12+s51
s12s34s51

+ s12+s51
s12s51s23

+ s12−s45+s23
s12s23s45

)
= sum of 3 triangles of A5 itself

(each with spurious poles ∼ s2)

Similar to “local” or “BCFW” triangulations of the amplituhedron:
manifest new prop. of φ3 theory obscured by Feynman diagrams!
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Worldsheet Associahedron & Scattering Equations

A well-known associahedron: minimal blow-up of the open-string
worldsheetM+

0,n := {σ1 < σ2 < · · · < σn}/SL(2,R) [Deligne, Mumford]

This is non-trivial in σ’s but becomes manifest e.g. using cross ratios

The canonical form ofM+
0,n is the “Parke-Taylor” form

ωWS
n :=

1

vol [SL(2)]

n∏
a=1

dσa
σa−σa+1

:= PT(1, 2, · · · , n) dµn

1
2

3

45

6
scattering equations−−−−−−−−−−−−−−→

as a map fromM+
0,n to An
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Pushforward from the wolrdsheet

On Hn, scattering eqs provide a diffeomorphism fromM+
0,n to An:

sa,a+1 = σa,a+1

∑
1<i+1≤a≤j<n

ci,j
σi,j

for a = 1, . . . , n−3 (σn →∞)

Diff A→ B =⇒ pushforward Ω(A)→ Ω(B) [Arkani-Hamed, Bai, Lam]

y = f(x) =⇒ Ω(B)y =
∑

x=f−1(y)

Ω(A)x

Canonical form of An, Ωφ3
n is the pushforward of ωWS

n by summing
over (n−3)! sol. of scattering eqs (geometric origin of CHY)∑

sol.

dµn PT(α)|H(α) = m(α|α) dn−3s
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Projective Scattering Forms

General scattering forms: sum over all cubic graphs with numerators

Ω[N ] =
∑
g

N(g)

n−3∧
I=1

d log sI , e.g . Ns d log s+Nt d log t+Nu d log u

Projectivity: require Ω[N ] to be i.e. covariant under sI → Λ(s)sI

=⇒ kinematic numerators can be chosen to satisfy Jacobi identities

N(gS) +N(gT ) +N(gU ) = 0 , e.g . Ns +Nt +Nu = 0

I1 I2

I3I4

I1 I4

I2I3

I1 I3

I4I2

S = sI1I2 T = sI2I3 U = sI1I3

gS gT gU
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Color is Kinematics

1

2 3 4

5

fa1a2bf ba3cf ca4a5 ↔

1

2 3 4

5

ds12 ∧ ds45

Duality between color factors and differential forms on Kn for cubic
graphs: C(g) and W (g) satisfy the same algebra.

Claim : W (g) := ±
n−3∧
I=1

dsI =⇒ W (gS)+W (gT )+W (gU ) = 0

Scattering forms are color-dressed amps without color factors.
For U(N), partial amps are pullbacks to subspaces (as bi-adjoint φ3).
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Uniqueness of YM and NLSM Forms

Remarkably rigid objects encoding full amps in YM & NLSM

Gauge invariance: ΩYM invariant under every shift εµi → εµi + αpµi

Adler zero: ΩNLSM vanishes under every soft limit pµi → 0

Key: forms are projective =⇒ unique ΩYM and ΩNLSM!

Implies the amp “uniqueness theorem” [Arkani-Hamed, Rodina, Trnka]:
(n−1)! parameters for amp vs. unique form up to an overall const.

Alternatively they are pushforward of rigid worldsheet objects

ΩYM
n =

∑
sol.

dµnPf ′Ψn , ΩNLSM
n =

∑
sol.

dµn det ′An
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Integrals of Canonical Forms

Natural to integrate ΩP in P provided regulators for all facets Wa’s

IP ≡ εd
∫
P

ΩP (Y )
∏

facets

(Y ·Wa)
εXa , e.g . ε

∫ 1

0

dx

x(1− x)
xεA(1− x)εB ,

The regulators ensure no log divergences, and the leading term in ε
comes from vertices, e.g. for simple polytopes (d facets for each):

lim
ε→0
IP ({X}) =

∑
vertex i

d∏
a

1

Xa
, e.g . lim

ε→0
I[0,1] =

1

A
+

1

B

lim
ε→0

ε2
∫

dxdy

x(y−x)(1−y)
xεA(y−x)εB(1−y)εC =

1

AB
+

1

BC
+

1

CA
.

Looks like canonical function of some polytope in X space.
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Integral vs. Pushforward

The geometry Q can be obtained via a map from P to X space:
“scattering equations” =saddle-point of “Koba-Nielson” factors∑

a

Xa d log(Y ·Wa) = 0 , or
∑
a

Xa

Y ·Wa
W I
a = 0 (I = 1, · · · , d)

Conjecture: Leading term of the integral IP equals canonical function
of Q, FQ(X), which is given by pushforward of Ω(P ):

lim
ε→0

∫
P

Ω(P )
∏
a

(Y ·Wa)
εXa = FQ(X) , where

ddX FQ(X) =
∑
sol.

Ω(P )|H , e.g . Ω(Q) =
∑

vertex i

±
∏
a

d logXa ,

We believe this to be the general mechanism behind CHY:
field-theory limit of string integral = pushforward via scattering eqs
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Same for integrals with extra walls passing through vertices of P :
Q can be thought of as “blowup” of P at those boundaries, e.g.

lim
ε→0

∫
dσ2dσ3

σ2σ23(1−σ3)
“KN” =

1

AB
+

(
1

A
+

1

C

)
1

(A+ C + E)
+

(
1

B
+

1

C

)
1

(B + C +D)

σA2

(1−σ3)
B

(1−σ2)
D

σC23

σE3

The leading term, and remarkably the pushforward, only depends on
the combinatorics, not any details of the extra walls.
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Complex Integrals vs. CHY formula

Another natural integral: |ΩP (Y )|2 on Cd. Same limit as the real one:

ICP := (
ε

2πi
)d
∫
Cd
|ΩP (Y )|2

∏
facets

|Y ·Wa|εXa , lim
ε→0
ICP = lim

ε→0
IP ,

Key: the limit again comes from every vertex, which gives the same
residue as the real case: limε→0

1
2πi

∫
C
dzdz̄
|z|2 |z|

εA = limε→0

∫
rdr
r2
rεA = 1

A .

The same holds for complex integrals with extra walls, where the
limit equals to “CHY formula” (self-intersecting number [Mizera])

lim
ε→0
ICP =

1

(2πi)d

∮
|EI |=ε

ΩP (Y ) Ω̂P (Y )∏d
I=1E

I
, EI :=

∑
a

XaW
I
a

Y ·Wa
.
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Integrals of General Forms

These integrals extract rational functions in X space from forms, and
we can apply them to general (non-d log) forms like ΩYM/NLSM.

Consider pullback of ΩYM(x) =
∑

gN
YM
g (ε, k) ∧i,j d log xij to Hn: the

regulated integral in An (all xij > 0) gives the partial amplitude!

lim
ε→0

εn−3
∫
xij>0

ΩYM(x)|H
∏
i,j

x
εXij

ij =
∑
g

ResgΩ
YM∏

X
(g)
ij

= MYM
n ,

e.g . lim
ε→0

∫
0<x<c

(Nsd log x+Ntd log(c− x))xεs(c− x)εt =
Ns
s
− Nt

t
.

Each vertex gives n−3 planar poles Xi j , times the residue. Here X’s
are given by the kinematic data defining residues, NYM

g (ε, p).
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Complex Integrals and Gravity Amplitude

Complex integral of general |Ω|2: pullback to any generic subspace
and put walls for all poles of Ω, and we get residue squared

lim
ε→0

∫
Cd
|Ω(d)(Y )|2

∏
a

|Y ·Wa|εXa =
∑

vertex i

|Resi Ω(d)|2∏d
aXa

,

If we take ΩYM
n in BCJ form, it gives exactly the gravity amplitude!

lim
ε→0

∫
Cd

|ΩYM
n (x)|2

2n−2−1∏
I

|xI |εsI =
∑
g

|ResgΩ
YM
n |2∏

s
(g)
I

= MGR
n , e.g .

lim
ε→0

∫
C
|Nsdx
x

+
Ntdy

y
+
Nudz

z
|2|x|εs|y|εt|z|εu =

|Ns|2

s
+
|Nt|2

t
+
|Nu|2

u
.
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Projectivity Needed for Double Copy

It is crucial to start with a projective form, otherwise the integral also
has non-vanishing residue at infinity ∼ Ns +Nt +Nu. In general,
projectivity ensures the absence of pole at infinity along any direction!

Projectivity ↔ No pole at infinity ↔ Double copy from |Ω|2

Different ways to represent ΩYM/NLSM → the integral always gives the
same limit. Also asymmetric: limε→0

∫
ΩYM
n (ΩNLSM

n )∗ = MBI
n

Any projective form admits Ω =
∑

αNαΩφ3(α), and integral gives

lim
ε→0

∫
Cn−3

ΩL Ω∗R
∏
I

|xI |εsI =
∑
α,β

NL(α)NR(β) m(α|β) .

which in particular implies KLT if expanded in a (n−3)! basis.
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Outlook

How to α′-deform canonical forms? String amps from An?
Generalizations to general cluster polytopes etc.

Loops: halohedra etc. at one loop [Salvatori] picture similar to
amplituhedron? connections to ambitwistor strings?

Four Dimensions: “amplituhedron” in momentum space; forms
combining helicity amps & pushforward from twistor string

A unified geometric picture for amplitudes & more?

Thank you !
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