Is self-interacting dark matter with no light mediator viable?

Camilo Garcia Cely

DESY, Hamburg DESY theory workshop

26 September, 2018

In collaboration with Xiaoyong Chu and Hitoshi Murayama Based on JCAP 1807 (2018) no.07, 013 and arXiv:1910.xxxxx

Motivation: Self-interacting DM without light mediators

2 Resonant SIDM

Self-heating DM

Challenges to the ACDM model at small scales

Core vs. cusp problem

dwarf galaxies exhibit a core while N-body simulations predict a cusp at their center

Moore (1994) Flores et al. (1994) Naray et al. (2011)

Challenges to the ACDM model at small scales

Core vs. cusp problem

dwarf galaxies exhibit a core while N-body simulations predict a cusp at their center

Moore (1994)

Flores et al. (1994) Naray et al. (2011)

Too-big-to-fail problem

Boylan-Kolchin et al.(2011)

See Kai Schmidt-Hoberg's talk (yesterday)

SIDM as a plausible solution

Astrophysical possible solutions:

- Including baryons on the simulations
- Supernova feedback
- Tidal effects
- Low star-formation rates

SIDM as a plausible solution

Astrophysical possible solutions:

- Including baryons on the simulations
- Supernova feedback
- Tidal effects
- Low star-formation rates

Particle physics solution:

 postulate dark matter interactions that become relevant at small scales, without modifying the physics at large scales.

Mean Free Path
$$\sim \left(rac{
ho}{m_{
m DM}} \sigma_{
m scattering}
ight)^{-1}$$

$$rac{\sigma_{
m scattering}}{m_{
m DM}}\sim 1{
m cm}^2/g$$
 at the scale of galaxies (v ~ 10 - 100 km/s)

SIDM as a plausible solution

Astrophysical possible solutions:

- Including baryons on the simulations
- Supernova feedback
- Tidal effects
- Low star-formation rates

Particle physics solution:

 postulate dark matter interactions that become relevant at small scales, without modifying the physics at large scales.

"..To be more specific, we suggest that the dark matter particles should have a mean free path between 1 kpc to 1 Mpc at the solar radius in a typical galaxy."

Soergel, Steinhardt (1999)

Mean Free Path
$$\sim \left(rac{
ho}{m_{
m DM}} \sigma_{
m scattering}
ight)^{-1}$$

$$\frac{\sigma_{
m scattering}}{m_{
m DM}}\sim 1{
m cm}^2/g$$
 at the scale of galaxies ($v\sim 10$ - 100 km/s)

Simulations show that this is indeed a solution

Wandelt, et.al (2000), Vogelsberger et.al (2012)
Peter et.al (2012), Rocha et.al (2013), Zavala et.al (2012)
Elbert et.al (2014), Kaplinghat (2015), Vogelsberger et.al (2015)
Francis-Yan Cyr-Racine (2015)

How can we obtain this cross section?

The cross section seemingly depends on the velocity Kaplinghat, Tulin, Yu (2015)

Kai Schmidt Hoberg's talk yesterday

Velocity-dependent scattering cross in nature?

Is this the only possibility? If that is true, many SIDM models are strongly disfavored.

- scattering of nucleons
 - → pions act as light mediators.

Velocity-dependent scattering cross in nature?

Is this the only possibility? If that is true, many SIDM models are strongly disfavored.

- scattering of nucleons
 - → pions act as light mediators.
- scattering of alpha particles

- → Resonant scattering.
- Inelastic scatterings

Velocity-dependent scattering cross in nature?

Is this the only possibility? If that is true, many SIDM models are strongly disfavored.

- scattering of nucleons
 - → pions act as light mediators.
- scattering of alpha particles

$$He\ He
ightarrow Be
ightarrow He\ He$$

- → Resonant scattering.
- Inelastic scatterings
 - → Exothermic reactions

Resonant scattering of Dark Matter

Model independent study: Preliminary.

$$\sigma = \sigma_0 + \frac{2J_R + 1}{(2J_{\text{DM}} + 1)^2} \frac{4\pi}{mE} \cdot \frac{\Gamma^2/4}{(E - E_R)^2 + \Gamma^2/4} \,, \quad \Gamma = m_R \gamma v^{2L+1}$$

Resonant scattering of Dark Matter

Model independent study: Preliminary.

$$\sigma = \sigma_0 + \frac{2J_R + 1}{(2J_{DM} + 1)^2} \frac{4\pi}{mE} \cdot \frac{\Gamma^2/4}{(E - E_R)^2 + \Gamma^2/4}, \quad \Gamma = m_R \gamma v^{2L+1}$$

Resonant scattering of Dark Matter

Model independent study: Preliminary.

$$\sigma = \sigma_0 + \frac{2J_R + 1}{(2J_{DM} + 1)^2} \frac{4\pi}{mE} \cdot \frac{\Gamma^2/4}{(E - E_R)^2 + \Gamma^2/4} \,, \quad \Gamma = m_R \gamma v^{2L+1}$$

$$\mathcal{L} = g R \overline{\mathsf{DM}} \gamma^{\mathsf{5}} \mathsf{DM}$$
 . (Pseudoscalar exchange) Preliminary.

$$\frac{L}{0} = \frac{\Gamma_R/m_R}{\Gamma_R/m_R} = \frac{V_R}{(\text{km/s})} = \frac{m_{\text{DM}}}{(\text{GeV})}$$

Example of a production mechanism

Consider annihilations of three DM particles into two of them.

SIMPs (Strongly Interacting Massive Particles)

$$\begin{array}{c|c}
\hline
DM \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Hochberg et al 2014

Example of a production mechanism

Consider annihilations of three DM particles into two of them.

SIMPs (Strongly Interacting Massive Particles)

Hochberg et al 2014

Concrete models:

- Dark pions. Dark α particles. PRELIMINARY
- QCD-like theories of dynamical chiral symmetry breaking Hochberg et al, 2014
- Vector DM Bernal, Chu, GGC, Hambye, Zaldivar, 2016

Self-heating Dark Matter

How does SIDM work?

Heat flows to the inner region

Self-heating Dark Matter

How does SIDM work?

Heat flows to the inner region

What if DM itself provides the heat? Exothermic Inelastic scatterings

Chu and CGC (JCAP 2018)

Gravothermal fluid approximation

Done for SIDM.

Gravothermal fluid approximation

Done for SIDM. For self-heating DM:

Chu and CGC (JCAP 2018)

$$\begin{split} \frac{ds}{dt} &= \frac{\partial s}{\partial t} + \mathbf{V} \cdot \nabla s &= \frac{\rho}{m^2} \langle \sigma v \rangle \mathcal{J} \\ &\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) &= -\rho \frac{\delta N}{\delta t} \,. \\ \sigma_0^2 \nabla \rho + \rho \left(\partial \mathbf{V} / \partial t + (\mathbf{V} \cdot \nabla) \mathbf{V} \right) &= -\rho \nabla \Phi \end{split}$$

$$\mathcal{J} = \xi \ \times \frac{\text{Released energy per collision}}{\text{Average kinetic energy}}$$

Gravothermal fluid approximation

Done for SIDM. For self-heating DM:

Chu and CGC (JCAP 2018)

$$\begin{split} \frac{ds}{dt} &= \frac{\partial s}{\partial t} + \mathbf{V} \cdot \nabla s &= \frac{\rho}{m^2} \langle \sigma v \rangle \mathcal{J} \\ &\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) &= -\rho \frac{\delta N}{\delta t} \,. \\ \sigma_0^2 \nabla \rho + \rho \left(\partial \mathbf{V} / \partial t + (\mathbf{V} \cdot \nabla) \mathbf{V} \right) &= -\rho \nabla \Phi \end{split}$$

$$\mathcal{J} = \xi \times \frac{\text{Released energy per collision}}{\text{Average kinetic energy}}$$

- The effect is bigger in small objects.
- A core is formed

$$rac{
ho_c \langle \sigma v
angle \mathcal{J} t_{\mathsf{age}}}{m} \simeq 1$$
 .

(analogous to SIDM, except for \mathcal{J} . Expect $\sigma \mathcal{J} \sim 1 \text{cm}^2/\text{g}$)

Phenomenology

Consider semi-annihilations DM DM \to DM ϕ . ϕ is the mediator. $\mathcal J$ is known up to the efficiency ξ .

Chu and CGC (JCAP 2018)

Conclusions

- Self-interacting dark matter (SIDM) is a well-motivated solution to the problems encountered at small scales.
- A velocity-dependent cross section can be obtained if dark matter resonantly scatters.
- Self-heating DM is a similar scenario. In this case, DM inelastically scatters releasing heat. Significant effects in dwarf galaxies but small effects in clusters. Chu and CGC (JCAP 2018)

Conclusions

- Self-interacting dark matter (SIDM) is a well-motivated solution to the problems encountered at small scales.
- A velocity-dependent cross section can be obtained if dark matter resonantly scatters.
- Self-heating DM is a similar scenario. In this case, DM inelastically scatters releasing heat. Significant effects in dwarf galaxies but small effects in clusters. Chu and CGC (JCAP 2018)

Thanks for your attention!