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Outline

• Motivations for studying
Perturbative Power Corrections

• Power Corrections for N-Jettiness
Subtractions at Fixed Order
for DY and Higgs production

• Resummation at Subleading Power

• Leading Log Resummation at
Next-to-Leading Power for Thrust
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Limits of QCD
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Figure 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularities. In b) we show the corresponding Glauber operators for the four operators in

SCET with two equivalent notations. The notation with the dotted line emphasizes the factorized nature

of the n and n̄ sectors in the SCET Glauber operators, which have a 1/P2
? between them.

These constraints are what ensure the diagrams give forward scattering. To leading power the

large Mandelstam invariant is s = n · p1 n̄ · p2 = n · p4 n̄ · p3 and we have the hierarchy s ⇠ �0 �
|t| ⇠ �2. For simplicity we often work in a frame where

p?1 = �p?4 = q?/2 , p?3 = �p?2 = q?/2 . (5.7)

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2
? = �~q 2

? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a.

They will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching

are represented by Fig. 4b. For simplicity, here we take ?-polarization for the external gluon

fields (leaving the calculation with the full set of polarizations to Sec. 5.1.3). Expanding in � the

results for the top row of diagrams at leading order is

i
h
ūn

n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih
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2
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i
, (5.8)
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i
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2
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ih�8⇡↵s(µ)�BC
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?

ih
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i
,

i
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? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih
ifCA4A1gµ1µ4

? n · p1

i
.

In writing these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity. We use color index Ai for the external

– 23 –

Collinear Soft Regge

• Significant progress in understanding QCD made by considering
limits where we have a power expansion in some small kinematic
quantity.

• All orders behavior described by factorization theorems (eg. thrust):

dσ(0)

dτ
= H(0)J(0)

τ ⊗ J(0)
τ ⊗ S (0)

τ + O
(ΛQCD

Qτ
, τ
)
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Power Corrections for Event Shapes

• Standard factorization theorems describe only leading power
term.

• More generally, can consider expanding an observable in τ

dσ

dτ
=
∞∑

n=0

(αs

π

)n 2n−1∑

m=0

c
(0)
nm

(
logm τ

τ

)

+

+
∞∑

n=1

(αs

π

)n 2n−1∑

m=0

c
(2)
nm logm τ

+
∞∑

n=1

(αs

π

)n 2n−1∑

m=0

c
(4)
nm τ logm τ

+ · · ·

=
dσ(0)

dτ
+

dσ(2)

dτ
+

dσ(4)

dτ
+ · · ·

Leading Power (LP)

Next to Leading Power (NLP)

• Why do we want to understand power corrections?
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Power Corrections for Event Shapes
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Leading Power (LP)

Next to Leading Power (NLP)

• Why do we want to understand power corrections?
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Some applications of Next to Leading Power calculations

Matching resummation with FO
If an observable τ needs resummation:

• Use Leading Power EFT for resummed XS at small τ

• For large τ use Fixed Order calculation to get fullO(αn
s ) contribution

• Need matching procedure in transition region between the two.

• Computing Power Corrections analytically extends domain of validity
of the EFT to larger values of τ =⇒ smaller transition regions =⇒
smaller uncertainties from matching procedure

Bootstrap
Power corrections provide constraints to
completely reconstruct amplitudes or cross
sections from limits.

Taming log divergence of NLP
Issue in adding log divergent fixed order power
correction to resummed LP cross section de-
mands resummation also at NLP
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[Moult, Stewart, GV, Zhu]

Remaining Parameters in

6-Point MHV Remainder

Function

[Basso, Sever, Vieira] [Dixon et al.]
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More Applications: Fixed Order Subtractions

• IR divergences in fixed order calculations can be regulated using event shape
observables.

σ(X ) =

∫

0

dTN
dσ(X )

dTN
=

T cut
N∫

0

dTN
dσ(X )

dTN
+

∫

T cut
N

dTN
dσ(X )

dTN

∫

T cut
N

dTN
dσ(X )

dTN

Additional jet resolved.

T cut
N∫

0

dTN
dσ(X )

dTN

Compute using factorization
in soft/collinear limits:

dσ

dτN
= HBa ⊗ Bb ⊗ S ⊗ J1 ⊗ · · · ⊗ JN−1 [1 +O(τN)]

• Want TN to isolate collinear and soft singularities around an N-jet configuration.

[Boughezal, Focke, Petriello, Liu], [Gaunt, Stahlhofen,Tackmann, Walsh]
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Power Corrections for NLO Subtractions

T cut
N∫

0

dTN
dσ(X )

dTN
,

dσ

dτN
= HBa ⊗ Bb ⊗ S ⊗ J1 ⊗ · · · ⊗ JN−1 +O(τN)

Power Correction

10-5 10-4 10-3 10-2 10-1
10-5

10-4

10-3

10-2

10-1• Error, ∆σ(τcut), (or com-
puting time) can be expo-
nentially improved by an-
alytically computing power
corrections.

• Understanding of power
corrections crucial for
applications to more
complicated processes.

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [1807.10764]
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Power corrections at Fixed Order

10-5 10-4 10-3 10-2 10-1
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(Ebert, Moult, Stewart, Tackmann, GV, Zhu) [1807.10764]
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Power corrections at FO: General Setup

hemisphere b hemisphere a

kµ
a(Y )

kµ
b (Y )

bµb
bµa

pµ
1

pµ
2

µ
a

µ
b

Y

p p

• We want to compute fully differential cross

section dσ
dQ2dYdT for color singlet production

(0-jettiness) including O(αs) and O(T /Q)

corrections to LO.

• Power corrections in O(T /Q):

• Perturbative

• NOT higher twist PDFs/non-perturbative power corrections.

• O(T /Q) corrections contained in:

• Phase space: Φ = Φ(0) + T
Q

Φ(2) +O(T
2

Q2 )

• Matrix element squared: |M|2 = A(0) + T
Q
A(2) +O(T

2

Q2 )

Schematically:
dσ

dQ2dYdT ∼
∫

dz

z

[
A(0)Φ(0) +

T
Q

A(0)Φ(2) +
T
Q

A(2)Φ(0)

]
+O

(T 2

Q2
, α2

s

)
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Power corrections at FO: full NLO results for pp → H
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NLO T lep
0 gg → Hg a1 a0

earlier fit +0.6090± 0.0060 +0.1824± 0.0043
analytic +0.6040 +0.1863

NLO T lep
0 gq → Hq a1 a0

earlier fit −0.0373± 0.0007 −0.42552± 0.00032
analytic −0.0381 −0.42576

FNLO(τ) = d
d ln τ

{
τ
[
a1 ln τ + a0 +O(τ)

]}

Numerical fit matches analytic calculation
within 1 σ at percent level.

[Ebert, Moult, Stewart, Tackmann, GV, Zhu]

[1807.10764]
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Power Corrections for Event Shapes: what next?

• So far, we have seen FO calculation of NLO Next to Leading
Power (NLP) term

• Can we predict these logs using resummation techniques at
subleading powers?

• Let’s start with the LL series

dσ

dτ
=
∞∑

n=0

(αs

4π

)n 2n−1∑

m=0

c
(0)
nm

(
logm τ

τ

)

+

+
(αs

4π

)
(a1 log τ + a0) NLO NLP

+
(αs

4π

)2 (
a3 log3 τ + a2 log2 τ + . . .

)
NNLO NLP

+
(αs

4π

)3 (
a5 log5 τ + a4 log4 τ + . . .

)
N3LO NLP

+ . . .
...

Leading Power (LP)
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Leading Log Resummation at

Next-to-Leading Power for Thrust in

H → gg

zs ⇠ ⌧

)
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⌧

(Moult, Stewart, GV, Zhu) [1804.04665]
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SCET

• SCET describes soft and collinear radiation in the presence of
a hard scattering.

p

p

b

W

dσ

dM1 · · ·
=
∑

{κ}
trHκIIJκi ⊗ · · · ⊗ JκjSκs ⊗ fp/i fp/j ⊗ fk→H ⊗ · · · ⊗ fl→H ⊗ F

• Allows for a factorized description: Hard, Jet, Beam, Soft func-
tions

[Bauer, Fleming, Pirjol, Stewart]
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Fixed Order Calculation

• Compute power corrections for Higgs thrust (H → gg) at lowest order

1

σ0

dσ(2)

dτ
= 8CA

(αs

4π

)[(1

ε
+ log

µ2

Q2τ

)
−
(

1

ε
+ log

µ2

Q2τ 2

)]
θ(τ) +O(α2

s )

= 8CA

(αs

4π

)
log τ θ(τ) +O(α2

s )

• No virtual corrections at lowest order (δ(τ) ∼ 1/τ).

• Divergences cancel between soft and collinear.

• Log appears at first non-vanishing order:

• At LP, log(τ)/τ arises from RG evolution of δ(τ)
• At NLP log(τ) arises from RG evolution of “nothing”?

[Freedman], [Moult, Rothen, Stewart, Tackmann, Zhu]
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LL Resummation for Thrust at NLP
[Moult, Stewart, Vita, Zhu]

• Analogously to what we have seen at FO, power corrections arise from two
distinct sources:

• Power corrections to scattering amplitudes.
• Power corrections to kinematics.

• Power corrections to scattering amplitudes can be computed from subleading
SCET operators [Moult, Stewart, GV]

• They give rise to new jet and soft functions, whose renormalization was not
previously known
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Renormalization of subleading soft functions
[Moult, Stewart, Vita, Zhu]

−→

• The subleading jet and soft functions satisfy a 2× 2 mixing RG

• Solving this equation to renormalize the operators, and resum
subleading power logarithms.

µ
d

dµ



S̃

(2)
g ,Bus

(y , µ)

S̃
(2)
g ,θ(y , µ)


 =



γ11(y , µ) γ12

0 γ22(y , µ)






S̃

(2)
g ,Bus

(y , µ)

S̃
(2)
g ,θ(y , µ)




S
(2)
g,θ(τ, µ) =

1

(N2
c − 1)

tr〈0|YT
n̄ (0)Yn(0)θ(τ − τ̂)YT

n (0)Yn̄(0)|0〉

• They are power suppressed due to θ(τ) ∼ 1 instead of δ(τ) ∼ 1/τ .

• We find this type of mixing is a generic behavior at subleading power. (see also

S.Jaskiewicz’s talk)
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Resummed Soft Function

• We find the final result for the renormalized subleading power soft
function:

S
(2)
g,Bus (Qτ, µ) = θ(τ)γ12 log

(
µ

Qτ

)
e

1
2
γ11 log2

(
µ
Qτ

)

• Expanded perturbatively, we see a simple series:

S
(2)
g,Bus (Qτ, µ) = θ(τ)

[
γ12 log

(
µ

Qτ

)
+

1

2
γ12γ11 log3

(
µ

Qτ

)
+ · · ·

]

• In particular, we find

• First log generated by mixing with the θ function operators.
• The single log is then dressed by Sudakov double logs from the

diagonal anomalous dimensions.

• Example also useful for understanding power suppressed RG consis-
tency.
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LL Resummation for Thrust at NLP

• Complete result given by sum of two contributions.

• Both have same Sudakov =⇒ can be directly added.

• Obtain the LL resummed result for pure glue H → gg thrust

1

σ0

dσ
(2)
LL

dτ
=

1

σ0

dσ
(2)
kin,LL

dτ
+

1

σ0

dσ
(2)
hard,LL

dτ

1

σ0

dσ
(2)
LL

dτ
=
(αs

4π

)
8CA log(τ)e−

αs
4π

Γg
cusp log2(τ)

checked with
FO calculation
up to O(α3

s )

• Provides the first all orders resummation
for an event shape at subleading power.

• Very simple result. Subleading
power LL driven by cusp anomalous
dimension!

[Moult, Stewart, Vita, Zhu]
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Conclusions
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µ d
dµ

S̃
(2)
g,Bus (y , µ)

S̃
(2)
g,θ(y , µ)

 =

γ11(y , µ) γ12

0 γ22(y , µ)


S̃

(2)
g,Bus (y , µ)

S̃
(2)
g,θ(y , µ)



1

σ0

dσ
(2)
LL

dτ
=
(αs

4π

)
8CA log(τ)e−

αs
4π Γg

cusp log2(τ)

• Computed O(αs) power correction of
differential cross section for color singlet
production including LL and NLL

• Cross section level renormalization at
subleading power involves a new RG
structure involving mixing in crucial
way.

• Achieved first all orders resummation at
subleading power for an event shape ob-
servable.

Thank you!
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Backup slides
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Power corrections at FO: PDF expansion

hemisphere b hemisphere a

kµ
a(Y )

kµ
b (Y )

bµb
bµa

pµ
1

pµ
2

µ
a

µ
b

Y

p p

nµ = (1, 0, 0, 1)

n̄µ = (1, 0, 0,−1)

• Need to keep track of O(T ) component of mo-

menta: both for phase space expansion and

mandelstams entering |M|2.

• Solving Q and Y measurements uniquely fixes

how factors of T enters the PDFs.

Example n-collinear emission, k+ ∼ T , k− ∼ Q:

pµa = QeY
[(

1 +
k−e−Y

Q

)
+
T
Q

k−

2Q
+O

(T 2

Q2

)]
nµ

2

pµb = Qe−Y

[
1 +
T
Q

(
eY +

k−

2Q

)
+O

(T 2

Q2

)]
n̄µ

2

• At subleading power both PDF momenta contain power corrections regardless of the

direction of the emission =⇒ derivative of both PDFs

fa

(
pa

Ecm

)
∼ fa

(
xa

za
+
T
Q

∆a

)
= fa

(
xa

za

)
+
T
Q

∆af
′
a

(
xa

za

)
fb

(
pb

Ecm

)
∼ fb

(
xb +

T
Q

∆b

)
= fb (xb) +

T
Q

∆b f
′
b (xb)

T power corrections from
residual momenta in PDFs
for an n-collinear emission:
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Power corrections at FO: Master formulae

• Expansion of phase space and matrix element squared in soft and

collinear limits has a general (universal) structure

n-Collinear Master Formula for 0-Jettiness power corrections

dσ
(2)
n

dQ2dYdT ∼
∫ 1

xa

dza

za

zεa
(1− za)ε

(
QT eY
ρ

)−ε{
fafb A

(2)(Q,Y , za)

+
eY

ρ
A(0) T

Q

[
fafb

(1− za)2 − 2

2za
+ xa

1− za

2za
f ′a fb + xb

1 + za

2za
faf
′
b

]}

Soft Master Formula for 0-Jettiness power corrections

dσ
(2)
s

dQ2dYdT ∼
1

ε

T −2ε

Q

{
Ā(0)(Q,Y )

[
fafb

(
− ρ

eY
− eY

ρ

)
+ xa

ρ

eY
f ′a fb + xb

eY

ρ
faf
′
b

]
+ fafb

[
ρQ Ā

(2)
+ (Q,Y ) +

Q

ρ
Ā

(2)
− (Q,Y )

]}
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Power corrections at FO: Cross section results

• Combining soft and collinear kernels, 1
ε poles cancel (consistency check)

and the differential cross section takes the form:

• Example for gg channel in H production:

• Extension to NNLO has been computed for the LL term
[Moult, Rothen, Stewart, Tackmann, Zhu], [Boughezal, Liu, Petriello]

dσ(2,n)

dQ2dYdT = σ̂LO
(
αs
4π

)n ∫ 1
xa

∫ 1
xb

dza
za

dzb
zb

[
fi fjC

(2,n)
fi fj

(za, zb, T ) + xa
za
f ′i fjC

(2,n)
f ′i fj

(za, zb, T ) + xb
zb
fi f
′
j C

(2,n)
fi f
′
j

(za, zb, T )

]

C
(2,1)

f ′g fg
(za, zb,T ) = 4CA

ρ

QeY
δ(1− za)

[(
− ln
T eY

Qρ
− 1

)
δ(1− zb) +

(1 + zb)(1− zb + z2
b )2

2z2
b

L0(1− zb)

]

+ 4CA
eY

Qρ

(1− za + z2
a )2

2za
δ(1− zb)
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An Important Illustrative Example

• Consider the power suppressed soft function:

S
(2)
g,τδ(τ, µ) =

1

(N2
c − 1)

tr〈0|YT
n̄ (0)Yn(0) τ δ(τ − τ̂)YT

n (0)Yn̄(0)|0〉

• This soft function vanishes at lowest order

S
(2)
g,τδ

(τ, µ)
∣∣∣
O(α0

s )
= = τδ(τ) = 0

• It has a UV divergence at the first order

S
(2)
g,τδ

(τ, µ)
∣∣∣
O(αs )

= 2 = g2
θ(τ)

(
1

ε
+ log

(
µ2

(Qτ)2

)
+O(ε)

)

• What renormalizes this function?

=⇒ Mixing with another operator!

[Moult, Stewart, Vita, Zhu]
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An Important Illustrative Example

• We can use a simple trick to find the missing operator.

• The RG for the leading power soft function is known:

µ
dS

(0)
g,δ

(τ, µ)

dµ
=

∫
dτ ′ 2Γgcusp

2

[
θ(τ − τ ′)
τ − τ ′

]
+

− log

(
µ2

Q2

)
δ(τ − τ ′)

 S
(0)
g,δ

(τ ′, µ)

• Multiplying by τ , we find

µ
d

dµ
τS

(0)
g,δ

(τ, µ) =

∫
dτ ′((τ − τ ′) + τ

′) 2Γgcusp

2

[
θ(τ − τ ′)
τ − τ ′

]
+

− log

(
µ2

Q2

)
δ(τ − τ ′)

 S
(0)
g,δ

(τ ′, µ)

• Simplifying, we have

µ
d

dµ
τS

(0)
g,δ

(τ, µ) =

∫
dτ ′ 4Γgcuspθ(τ − τ ′)S(0)

g,δ
(τ ′, µ) +

∫
dτ ′γSg (τ − τ ′)τ ′S(0)

g,δ
(τ ′, µ)

• Performing the integral, we have

µ
d

dµ
τS

(0)
g,δ

(τ, µ) = 4Γgcusp S
(2)
g,θ

(τ, µ) +

∫
dτ ′γSg (τ − τ ′, µ)τ ′S(0)

g,δ
(τ ′, µ)

• Here we have defined a new power suppressed soft function

S
(2)
g,θ

(τ, µ) =
1

(N2
c − 1)

tr〈0|YT
n̄ (0)Yn(0)θ(τ − τ̂)YT

n (0)Yn̄(0)|0〉

[Moult, Stewart, Vita, Zhu]
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θ-Function Operators

• At subleading power we require θ-jet and θ-soft functions

J
(2)
Bn,θ(τ, µ) =

(2π)3

(N2
c − 1)

tr
〈

0
∣∣∣Bµan⊥(0) δ(Q + P̄)δ2(P⊥) θ(τ − τ̂)Bµan⊥,ω(0)

∣∣∣0〉
S

(2)
g,θ(τ, µ) =

1

(N2
c − 1)

tr〈0|YT
n̄ (0)Yn(0)θ(τ − τ̂)YT

n (0)Yn̄(0)|0〉

• They are power suppressed due to θ(τ) ∼ 1
instead of δ(τ) ∼ 1/τ .

• Arise only through mixing at cross section level.

• We find this type of mixing is a generic behavior at subleading
power.
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Perturbative View

• Returning to our perturbative calculation of the subleading
power soft function

S
(2)
g,τδ(τ, µ)

∣∣∣
O(αs )

= 2 = g2θ(τ)

(
1

ε
+ log

(
µ2

(Qτ)2

)
+O(ε)

)

• UV divergence now easily understood as mixing with θ function
operator, which is non-vanishing at lowest order

S
(2)
g,θ(τ, µ)

∣∣∣
O(α0

s )
= = θ(τ)

• Similar θ function counterterm observed by Paz in subleading power jet function
at one-loop. Our example enables us to prove their all orders structure.

27



Gauge Invariant Ultrasoft Fields

• At subleading power, explicit ultrasoft fields appear.

• Wilson lines from field redefinition can be arranged into gauge
invariant “gluon” operators plus Wilson lines (analogous to B⊥n
at leading power).

Y
(r) †
ni iD

(r)µ
us Y

(r)
ni = i∂µus + [Y

(r) †
ni iD

(r)µ
us Y

(r)
ni ] = i∂µus + T a

(r)gB
aµ
us(i)

• Provides gauge invariant description of soft sector at subleading
power.
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Matrix Element Corrections

• Matrix element corrections arise from operators involving an
additional Bn⊥, Bus or ∂us .

• We have performed an explicit matching to the required oper-
ators

O(2)
PB1 = C

(2)
PB1 if

abcBa
n⊥,ω1

·
[
P⊥B

b
n̄⊥,ω2

·
]
Bc
n̄⊥,ω3

H ,

O(2)
PB2 = C

(2)
PB2 if

abc
[
P⊥ · B

a
n̄⊥,ω3

]
Bb
n⊥,ω1

· Bc
⊥n̄,ω2

H

O(2)
B(us(n))

= C
(2)
B(us(n))

(
if abd

(
YT
n Yn̄

)dc) (Ba
n⊥,ω1

· Bb
n̄⊥,ω2

n̄ · gBc
us(n)

)
,

O(2)
B(us(n̄))

= C
(2)
B(us(n̄))

(
if abd

(
YT
n̄ Yn

)dc) (Ba
n⊥,ω1

· Bb
n̄⊥,ω2

n · gBc
us(n̄)

)

O(2)
∂B(us)(0)

= C
(2)
n·∂B

µa
⊥n,ω1

in · ∂Bµb⊥n̄,ω2

(
YT
n̄ Yn

)abH ,
O(2)

∂B(us)(0̄)
= C

(2)
n̄·∂B

µa
⊥n̄,ω2

i n̄ · ∂Bµb⊥n,ω1

(
YT
n̄ Yn

)abH
• Wilson coefficients of soft operators are fixed

to all orders using RPI: C
(2)
B(us(n)) = −∂C

(0)

∂ω1

[Moult, Stewart, Vita]
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Factorization for Matrix Element Corrections

• By RG consistency, it is sufficient to consider the power sup-
pressed soft function, involving a ∂us or Bus

which appears in the factorization as
dσ

(2)
Bus ,n

dτ
= Hn̄·B(Q2)

∫
dτndτn̄dτusδ(τ − τn − τn̄ − τus )

·
[∫

d4r

(2π)4
S

(2)
nBus

(τus , r)

]
·
[∫

dk−

2π
Jn̄(τn̄, k

−)

]
·
[∫

dl+

2π
Jn(τn, l

+)

]

1

Nc
tr〈0|YT

n̄ (x)Yn(x)n̄ · Bus(n)(x)δ(τus − τ̂us )YT
n (0)Yn̄(0)|0〉 =

∫
d4r

(2π)4
e−ir·xS(2)

nBus
(τus , r)

• These operators mix with a θ function soft function just as
with the ‘illustrative’ example considered above. Resummation
is identical.

=
γnBus→θ

ε
θ(τ)

µ
d

dµ

(
SnBus (τ, µ)
Sg,θ(τ, µ)

)
=

∫
dτ ′

(
γSg,δ(τ − τ ′, µ) γnBus→θδ(τ − τ ′)

0 γSg,δ(τ − τ ′, µ)

)(
SnBus (τ ′, µ)

Sg,θ(τ ′, µ)

)
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Kinematic Corrections

• Kinematic corrections arise from

• Phase space
• Thrust observable definition (does not contribute at LL)

• Phase space corrections can be treated through choice of rout-
ing

1

(Q + ks )2
=

1

Q2
−

n · ks
Q3
−

n̄ · ks
Q3

+O(τ2)

• Are described by the ‘illustrative’ example considered above

µ
d

dµ

 S
(2)
g,τδ

(τ, µ)

S
(2)
g,θ

(τ, µ)

 =

∫
dτ ′

(
γSg,τδ→τδ(τ − τ ′, µ) γSg,τδ→θδ(τ − τ ′)

0 γSg,θ→θ(τ − τ ′, µ)

) S
(2)
g,τδ

(τ ′, µ)

S
(2)
g,θ

(τ ′, µ)



S
(2)
g,τδ

(τ, µ) =
1

(N2
c − 1)

tr〈0|YT
n̄ (0)Yn(0)τ δ(τ − τ̂)YT

n (0)Yn̄(0)|0〉
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Fixed Order Check

• We can explicitly check this result by fixed order calculation of the
power corrections.

• RG consistency for 1/ε poles implies that the LL power correction
can be computed only from hard-collinear contributions:

• Expanding known results for H → 3 partons at NNLO [Gehrmann et al.],
we can analytically compute the power corrections to O(α3

s ):

1

σH
0

dσH

dτ
=
αs

4π
8CA log τ −

(αs

4π

)2

32C 2
A log3 τ +

(αs

4π

)3

64C 3
A log5 τ +O(α4

s )

• Provides a highly non-trivial check on the correctness of our
all orders resummation.

[Moult, Rothen, Stewart, Tackmann, Zhu]
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