Next to Leading Power Corrections: Resummation and Improving Fixed Order Subtractions

Gherardo Vita

IIt
 =
 Technology

DESY Theory Workshop 2018
Hamburg, 26 September 2018

[Moult, Stewart, GV, Zhu] 1804.04665 and
[Ebert, Moult, Stewart, Tackmann, GV, Zhu] 1807.10764

Outline

- Motivations for studying Perturbative Power Corrections
- Power Corrections for N -Jettiness Subtractions at Fixed Order for DY and Higgs production

- Resummation at Subleading Power

- Leading Log Resummation at Next-to-Leading Power for Thrust

Limits of QCD

- Significant progress in understanding QCD made by considering limits where we have a power expansion in some small kinematic quantity.

Collinear

Soft

Regge

- All orders behavior described by factorization theorems (eg. thrust):

$$
\frac{\mathrm{d} \sigma^{(0)}}{\mathrm{d} \tau}=H^{(0)} J_{\tau}^{(0)} \otimes J_{\tau}^{(0)} \otimes S_{\tau}^{(0)}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q \tau}, \tau\right)
$$

Power Corrections for Event Shapes

- Standard factorization theorems describe only leading power term.
- More generally, can consider expanding an observable in τ

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \tau} & =\sum_{n=0}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(0)}\left(\frac{\log ^{m} \tau}{\tau}\right)_{+} \\
& +\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(2)} \log ^{m} \tau \\
& +\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n^{2 n-1}} \sum_{m=0}^{2 n-1} c_{n m}^{(4)} \tau \log ^{m} \tau \\
& +\cdots \\
& =\frac{d \sigma^{(0)}}{d \tau}+\frac{d \sigma^{(2)}}{d \tau}+\frac{d \sigma^{(4)}}{d \tau}+\cdots
\end{aligned}
$$

Power Corrections for Event Shapes

- Standard factorization theorems describe only leading power term.
- More generally, can consider expanding an observable in τ

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \tau} & =\sum_{n=0}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(0)}\left(\frac{\log ^{m} \tau}{\tau}\right)_{+} \\
& +\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(2)} \log ^{m} \tau \\
& +\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(4)} \tau \log ^{m} \tau \\
& +\cdots \\
& =\frac{d \sigma^{(0)}}{d \tau}+\frac{d \sigma^{(2)}}{d \tau}+\frac{d \sigma^{(4)}}{d \tau}+\cdots
\end{aligned}
$$

- Why do we want to understand power corrections?

Some applications of Next to Leading Power calculations

Matching resummation with FO

If an observable τ needs resummation:

- Use Leading Power EFT for resummed XS at small τ
- For large τ use Fixed Order calculation to get full $\mathcal{O}\left(\alpha_{s}^{n}\right)$ contribution
- Need matching procedure in transition region between the two.
- Computing Power Corrections analytically extends domain of validity of the EFT to larger values of $\tau \Longrightarrow$ smaller transition regions \Longrightarrow smaller uncertainties from matching procedure

Bootstrap

Power corrections provide constraints to completely reconstruct amplitudes or cross sections from limits.

Remaining Parameters in 6-Point MHV Remainder	Constraint	$L=2$	$L=3$	$L=4$
	1. Integrability	75	643	5897
	2. Total S_{3} symmetry	20	151	1224
Function	3. Parity invariance	18	120	874
	4. Collinear vanishing (T^{0})	4	59	622
LL All Powers \longrightarrow	5. OPE leading discontinuity	0	26	482
	6. Final entry	0	2	113
	7. Multi-Regge limit	0	2	80
NLP, NNLP \longrightarrow	8. Near-collinear OPE (T^{1})	0	0	4
	9. Near-collinear OPE (T^{2})	0	0	0

[Basso, Sever, Vieira]
[Dixon et al.]

Taming log divergence of NLP

Issue in adding log divergent fixed order power correction to resummed LP cross section demands resummation also at NLP

More Applications: Fixed Order Subtractions

- IR divergences in fixed order calculations can be regulated using event shape observables.
[Boughezal, Focke, Petriello, Liu], [Gaunt, Stahlhofen,Tackmann, Walsh]

$$
\sigma(X)=\int_{0} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}=\int_{0}^{\mathcal{T}_{N}^{\text {cut }}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}+\int_{\mathcal{T}_{N}^{\text {cut }}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}
$$

- Want \mathcal{T}_{N} to isolate collinear and soft singularities around an N-jet configuration.

$$
\int_{0}^{\mathcal{T}_{N}^{\mathrm{cut}}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}
$$

$$
\int_{\mathcal{T}_{N} \text { cut }} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}
$$

Compute using factorization in soft/collinear limits:

$$
\frac{d \sigma}{d \tau_{N}}=H B_{a} \otimes B_{b} \otimes S \otimes J_{1} \otimes \cdots \otimes J_{N-1}\left[1+\mathcal{O}\left(\tau_{N}\right)\right]
$$

Additional jet resolved.

$$
\int_{0}^{\tau_{N}^{\mathrm{uNt}}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \tau_{N}}, \quad \frac{d \sigma}{d \tau_{N}}=H B_{a} \otimes B_{b} \otimes S \otimes J_{1} \otimes \cdots \otimes J_{N-1}+\mathcal{O}\left(\tau_{N}\right)
$$

Power Correction

- Error, $\Delta \sigma\left(\tau_{\text {cut }}\right)$, (or computing time) can be exponentially improved by analytically computing power corrections.
- Understanding of power corrections crucial for applications to more complicated processes.

Power corrections at Fixed Order

(Ebert, Moult, Stewart, Tackmann, GV, Zhu) [1807.10764]

Power corrections at FO: General Setup

- We want to compute fully differential cross section $\frac{\mathrm{d} \sigma}{\mathrm{d} Q^{2} \mathrm{~d} Y \mathrm{~d} \mathcal{T}}$ for color singlet production (0-jettiness) including $\mathcal{O}\left(\alpha_{s}\right)$ and $\mathcal{O}(\mathcal{T} / Q)$ corrections to LO.
- Power corrections in $\mathcal{O}(\mathcal{T} / Q)$:
- Perturbative

- NOT higher twist PDFs/non-perturbative power corrections.
- $\mathcal{O}(\mathcal{T} / Q)$ corrections contained in:
- Phase space: $\Phi=\phi^{(0)}+\frac{\mathcal{T}}{Q} \Phi^{(2)}+\mathcal{O}\left(\frac{\mathcal{T}^{2}}{Q^{2}}\right)$
- Matrix element squared: $|\mathcal{M}|^{2}=A^{(0)}+\frac{\mathcal{T}}{Q} A^{(2)}+\mathcal{O}\left(\frac{\mathcal{T}^{2}}{Q^{2}}\right)$

Schematically: $\quad \frac{\mathrm{d} \sigma}{\mathrm{d} Q^{2} \mathrm{~d} \boldsymbol{Y} \mathrm{~d} \mathcal{T}} \sim \int \frac{\mathrm{~d} z}{z}\left[A^{(0)} \Phi^{(0)}+\frac{\mathcal{T}}{Q} A^{(0)} \Phi^{(2)}+\frac{\mathcal{T}}{Q} A^{(2)} \Phi^{(0)}\right]+\mathcal{O}\left(\frac{\mathcal{T}^{2}}{Q^{2}}, \alpha_{s}^{2}\right)$

[Ebert, Moult, Stewart, Tackmann, GV, Zhu]

$F_{\mathrm{NLO}}(\tau)=\frac{\mathrm{d}}{\mathrm{d} \ln \tau}\left\{\tau\left[a_{1} \ln \tau+a_{0}+\mathcal{O}(\tau)\right]\right\}$	$\mathrm{NLO} \mathcal{T}_{0}^{\text {lep }} \mathrm{gg} \rightarrow \mathrm{Hg}$	a_{1}	a_{0}
	earlier fit analytic	$\begin{aligned} & +0.6090 \pm 0.0060 \\ & +0.6040 \end{aligned}$	$\begin{aligned} & +0.1824 \pm 0.0043 \\ & +0.1863 \end{aligned}$
Numerical fit matches analytic calculation within 1σ at percent level.	$\mathrm{NLO} \mathcal{T}_{0}^{\text {lep }} \mathrm{gq} \rightarrow \mathrm{Hq}$	a_{1}	a_{0}
	earlier fit analytic	$\begin{aligned} & -0.0373 \pm 0.0007 \\ & -0.0381 \end{aligned}$	$\begin{aligned} & -0.42552 \pm 0.00032 \\ & -0.42576 \end{aligned}$

Power Corrections for Event Shapes: what next?

- So far, we have seen FO calculation of NLO Next to Leading Power (NLP) term

$$
\begin{array}{rlr}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \tau} & =\sum_{n=0}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(0)}\left(\frac{\log ^{m} \tau}{\tau}\right)_{+} & \text {Leading Power (LP) } \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)\left(a_{1} \log \tau+a_{0}\right) & \text { NLO NLP } \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(a_{3} \log ^{3} \tau+a_{2} \log ^{2} \tau+\ldots\right) & \text { NNLO NLP } \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}\left(a_{5} \log ^{5} \tau+a_{4} \log ^{4} \tau+\ldots\right) & \text { N }^{3} \text { LO NLP } \\
& +\ldots & \vdots
\end{array}
$$

- Can we predict these logs using resummation techniques at subleading powers?
- Let's start with the LL series

Leading Log Resummation at
 Next-to-Leading Power for Thrust in $H \rightarrow g g$

(Moult, Stewart, GV, Zhu) [1804.04665]

- SCET describes soft and collinear radiation in the presence of a hard scattering.

- Allows for a factorized description: Hard, Jet, Beam, Soft functions
$\frac{d \sigma}{d \mathcal{M}_{1} \cdots}=\sum_{\{\kappa\}} \operatorname{tr} H_{k} I I J_{K_{i}} \otimes \cdots \otimes J_{K_{j}} S_{k_{s}} \otimes f_{p / i} f_{p / j} \otimes f_{k \rightarrow H} \otimes \cdots \otimes f_{l \rightarrow H} \otimes F$

Fixed Order Calculation

- Compute power corrections for Higgs thrust $(H \rightarrow g g)$ at lowest order

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma^{(2)}}{\mathrm{d} \tau} & =8 C_{A}\left(\frac{\alpha_{s}}{4 \pi}\right)\left[\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{Q^{2} \tau}\right)-\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{Q^{2} \tau^{2}}\right)\right] \theta(\tau)+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& =8 C_{A}\left(\frac{\alpha_{s}}{4 \pi}\right) \log \tau \theta(\tau)+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

- No virtual corrections at lowest order $(\delta(\tau) \sim 1 / \tau)$.
- Divergences cancel between soft and collinear.
- Log appears at first non-vanishing order:
- At LP, $\log (\tau) / \tau$ arises from RG evolution of $\delta(\tau)$
- At NLP $\log (\tau)$ arises from RG evolution of "nothing"?

LL Resummation for Thrust at NLP

- Analogously to what we have seen at FO, power corrections arise from two distinct sources:
- Power corrections to scattering amplitudes.
- Power corrections to kinematics.
- Power corrections to scattering amplitudes can be computed from subleading SCET operators [Moult, Stewart, GV]

- They give rise to new jet and soft functions, whose renormalization was not previously known

- The subleading jet and soft functions satisfy a 2×2 mixing RG

$$
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu}\binom{\tilde{S}_{g, \mathcal{B}_{u s}}^{(2)}(y, \mu)}{\tilde{S}_{g, \theta}^{(2)}(y, \mu)}=\left(\begin{array}{cc}
\gamma_{11}(y, \mu) & \gamma_{12} \\
0 & \gamma_{22}(y, \mu)
\end{array}\right)\binom{\tilde{S}_{g, \mathcal{B}_{u s}}^{(2)}(y, \mu)}{\tilde{S}_{g, \theta}^{(2)}(y, \mu)}
$$

- Solving this equation to renormalize the operators, and resum subleading power logarithms.

$$
S_{g, \theta}^{(2)}(\tau, \mu)=\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \theta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle
$$

- They are power suppressed due to $\theta(\tau) \sim 1$ instead of $\delta(\tau) \sim 1 / \tau$.
- We find this type of mixing is a generic behavior at subleading power. (see also S.Jaskiewicz's talk)

Resummed Soft Function

- We find the final result for the renormalized subleading power soft function:

$$
S_{g, \mathcal{B}_{U S}}^{(2)}(Q \tau, \mu)=\theta(\tau) \gamma_{12} \log \left(\frac{\mu}{Q \tau}\right) e^{\frac{1}{2} \gamma_{11} \log ^{2}\left(\frac{\mu}{Q T}\right)}
$$

- Expanded perturbatively, we see a simple series:

$$
S_{g, \mathcal{B}_{u s}}^{(2)}(Q \tau, \mu)=\theta(\tau)\left[\gamma_{12} \log \left(\frac{\mu}{Q \tau}\right)+\frac{1}{2} \gamma_{12} \gamma_{11} \log ^{3}\left(\frac{\mu}{Q \tau}\right)+\cdots\right]
$$

- In particular, we find
- First log generated by mixing with the θ function operators.
- The single log is then dressed by Sudakov double logs from the diagonal anomalous dimensions.
- Example also useful for understanding power suppressed RG consistency.

LL Resummation for Thrust at NLP

- Complete result given by sum of two contributions.

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\mathrm{LL}}^{(2)}}{\mathrm{d} \tau}=\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\mathrm{kin}, \mathrm{LL}}^{(2)}}{\mathrm{d} \tau}+\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\text {hard }, \mathrm{LL}}^{(2)}}{\mathrm{d} \tau}
$$

- Both have same Sudakov \Longrightarrow can be directly added.
- Obtain the LL resummed result for pure glue $H \rightarrow g g$ thrust

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\mathrm{LL}}^{(2)}}{\mathrm{d} \tau}=\left(\frac{\alpha_{s}}{4 \pi}\right) 8 C_{A} \log (\tau) e^{-\frac{\alpha_{s}}{4 \pi} \Gamma_{\text {cusp }}^{g} \log ^{2}(\tau)}
$$

checked with FO calculation
up to $\mathcal{O}\left(\alpha_{s}^{3}\right)$

- Provides the first all orders resummation for an event shape at subleading power.
- Very simple result. Subleading power LL driven by cusp anomalous dimension!

Conclusions

- Computed $\mathcal{O}\left(\alpha_{s}\right)$ power correction of differential cross section for color singlet production including LL and NLL

- Cross section level renormalization at subleading power involves a new RG structure involving mixing in crucial way.
- Achieved first all orders resummation at subleading power for an event shape ob-

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\mathrm{LL}}^{(2)}}{\mathrm{d} \tau}=\left(\frac{\alpha_{s}}{4 \pi}\right) 8 C_{A} \log (\tau) e^{-\frac{\alpha_{s}}{4 \pi}} \Gamma_{\text {cusp }}^{g} \log ^{2}(\tau)
$$ servable.

Conclusions

- Computed $\mathcal{O}\left(\alpha_{s}\right)$ power correction of differential cross section for color singlet production including LL and NLL

- Cross section level renormalization at subleading power involves a new RG structure involving mixing in crucial

$$
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu}\binom{\tilde{s}_{\xi, B_{s s}}^{(2)}(y, \mu)}{\tilde{s}_{g, \theta}^{(2)}(y, \mu)}=\left(\begin{array}{cc}
\gamma_{11}(y, \mu) & \gamma_{12} \\
0 & \gamma_{22}(y, \mu)
\end{array}\right)\binom{\tilde{s}_{\xi, B_{s s}}^{(2)}(y, \mu)}{\tilde{s}_{\xi, 9}^{(2)}(y, \mu)}
$$ way.

- Achieved first all orders resummation at subleading power for an event shape ob-

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\mathrm{LL}}^{(2)}}{\mathrm{d} \tau}=\left(\frac{\alpha_{s}}{4 \pi}\right) 8 C_{A} \log (\tau) e^{-\frac{\alpha_{s}}{4 \pi}} \Gamma_{\text {cusp }}^{g} \log ^{2}(\tau)
$$ servable.

Thank you!

Backup slides

Power corrections at FO: PDF expansion

- Need to keep track of $\mathcal{O}(\mathcal{T})$ component of momenta: both for phase space expansion and mandelstams entering $|\mathcal{M}|^{2}$.

Example n-collinear emission, $k^{+} \sim \mathcal{T}, k^{-} \sim Q$:

$$
\begin{aligned}
& p_{a}^{\mu}=Q e^{Y}\left[\left(1+\frac{k^{-} e^{-Y}}{Q}\right)+\frac{\mathcal{T}}{Q} \frac{k^{-}}{2 Q}+\mathcal{O}\left(\frac{\mathcal{T}^{2}}{Q^{2}}\right)\right] \frac{n^{\mu}}{2} \\
& p_{b}^{\mu}=Q e^{-Y}\left[1+\frac{\mathcal{T}}{Q}\left(e^{Y}+\frac{k^{-}}{2 Q}\right)+\mathcal{O}\left(\frac{\mathcal{T}^{2}}{Q^{2}}\right)\right] \frac{\bar{n}^{\mu}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& n^{\mu}=(1,0,0,1) \\
& \bar{n}^{\mu}=(1,0,0,-1)
\end{aligned}
$$

- At subleading power both PDF momenta contain power corrections regardless of the direction of the emission \Longrightarrow derivative of both PDFs
\mathcal{T} power corrections from residual momenta in PDFs for an n-collinear emission:

$$
\begin{aligned}
& f_{a}\left(\frac{p_{a}}{E_{c m}}\right) \sim f_{a}\left(\frac{x_{a}}{z_{a}}+\frac{\mathcal{T}}{Q} \Delta_{a}\right)=f_{a}\left(\frac{x_{a}}{z_{a}}\right)+\frac{\mathcal{T}}{Q} \Delta_{a} f_{a}^{\prime}\left(\frac{x_{a}}{z_{a}}\right) \\
& f_{b}\left(\frac{p_{b}}{E_{c m}}\right) \sim f_{b}\left(x_{b}+\frac{\mathcal{T}}{Q} \Delta_{b}\right)=f_{b}\left(x_{b}\right)+\frac{\mathcal{T}}{Q} \Delta_{b} f_{b}^{\prime}\left(x_{b}\right)
\end{aligned}
$$

- Expansion of phase space and matrix element squared in soft and collinear limits has a general (universal) structure
n-Collinear Master Formula for 0-Jettiness power corrections

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{n}^{(2)}}{\mathrm{d} Q^{2} \mathrm{~d} Y \mathrm{~d} \mathcal{T}} \sim & \int_{x_{a}}^{1} \frac{\mathrm{~d} z_{a}}{z_{a}} \frac{z_{a}^{\epsilon}}{\left(1-z_{a}\right)^{\epsilon}}\left(\frac{Q \mathcal{T} e^{Y}}{\rho}\right)^{-\epsilon}\left\{f_{a} f_{b} A^{(2)}\left(Q, Y, z_{a}\right)\right. \\
& \left.+\frac{e^{Y}}{\rho} A^{(0)} \frac{\mathcal{T}}{Q}\left[f_{a} f_{b} \frac{\left(1-z_{a}\right)^{2}-2}{2 z_{a}}+x_{a} \frac{1-z_{a}}{2 z_{a}} f_{a}^{\prime} f_{b}+x_{b} \frac{1+z_{a}}{2 z_{a}} f_{a} f_{b}^{\prime}\right]\right\}
\end{aligned}
$$

Soft Master Formula for 0-Jettiness power corrections

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma_{s}^{(2)}}{\mathrm{d} Q^{2} \mathrm{~d} Y \mathrm{~d} \mathcal{T}} \sim \frac{1}{\epsilon} \frac{\mathcal{T}^{-2 \epsilon}}{Q}\left\{\bar{A}^{(0)}(Q, Y)\left[f_{a} f_{b}\left(-\frac{\rho}{e^{Y}}-\frac{e^{Y}}{\rho}\right)+x_{a} \frac{\rho}{e^{Y}} f_{a}^{\prime} f_{b}+x_{b} \frac{e^{Y}}{\rho} f_{a} f_{b}^{\prime}\right]\right. \\
&\left.+f_{a} f_{b}\left[\rho Q \bar{A}_{+}^{(2)}(Q, Y)+\frac{Q}{\rho} \bar{A}_{-}^{(2)}(Q, Y)\right]\right\}
\end{aligned}
$$

Power corrections at FO: Cross section results

- Combining soft and collinear kernels, $\frac{1}{\epsilon}$ poles cancel (consistency check) and the differential cross section takes the form:
$\frac{\mathrm{d}{ }^{(2, n)}}{\mathrm{d} Q^{2} \mathrm{~d} Y \mathrm{~d} \mathcal{T}}=\hat{\sigma}^{\mathrm{LO}}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} \int_{x_{a}}^{1} \int_{x_{b}}^{1} \frac{\mathrm{~d} z_{a}}{z_{a}} \frac{\mathrm{~d} z_{b}}{z_{b}}\left[f_{i} f_{j} C_{f_{i} f_{j}}^{(2, n)}\left(z_{a}, z_{b}, \mathcal{T}\right)+\frac{x_{a}}{z_{a}} f_{i}^{\prime} f_{j} C_{f_{i}^{\prime} f_{j}}^{(2, n)}\left(z_{a}, z_{b}, \mathcal{T}\right)+\frac{x_{b}}{z_{b}} f_{i} f_{j}^{\prime} C_{f_{i} f_{j}^{\prime}}^{(2, n)}\left(z_{a}, z_{b}, \mathcal{T}\right)\right]$
- Example for $g g$ channel in H production:

$$
\begin{aligned}
C_{f_{g}^{\prime} f_{g}}^{(2,1)}\left(z_{a}, z_{b}, \mathcal{T}\right) & =4 C_{A} \frac{\rho}{Q e^{Y}} \delta\left(1-z_{a}\right)\left[\left(-\ln \frac{\mathcal{T} e^{Y}}{Q \rho}-1\right) \delta\left(1-z_{b}\right)+\frac{\left(1+z_{b}\right)\left(1-z_{b}+z_{b}^{2}\right)^{2}}{2 z_{b}^{2}} \mathcal{L}_{0}\left(1-z_{b}\right)\right] \\
& +4 C_{A} \frac{e^{Y}}{Q \rho} \frac{\left(1-z_{a}+z_{a}^{2}\right)^{2}}{2 z_{a}} \delta\left(1-z_{b}\right)
\end{aligned}
$$

- Extension to NNLO has been computed for the LL term [Moult, Rothen, Stewart, Tackmann, Zhu], [Boughezal, Liu, Petriello]

An Important Illustrative Example

- Consider the power suppressed soft function:

$$
S_{g, \tau \delta}^{(2)}(\tau, \mu)=\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \tau \delta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle
$$

- This soft function vanishes at lowest order

$$
\left.s_{\xi, \tau \delta}^{(2)}(\tau, \mu)\right|_{\mathcal{O}\left(\alpha_{s}^{0}\right)}=\nu_{n}
$$

- It has a UV divergence at the first order
- What renormalizes this function?

An Important Illustrative Example

- Consider the power suppressed soft function:

$$
S_{g, \tau \delta}^{(2)}(\tau, \mu)=\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \tau \delta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle
$$

- This soft function vanishes at lowest order

$$
\left.s_{\xi, \tau \delta}^{(2)}(\tau, \mu)\right|_{\mathcal{O}\left(\alpha_{s}^{0}\right)}=\nu_{n}
$$

- It has a UV divergence at the first order
- What renormalizes this function?
\Longrightarrow Mixing with another operator!

An Important Illustrative Example

- We can use a simple trick to find the missing operator.
- The RG for the leading power soft function is known:

$$
\mu \frac{d S_{g, \delta}^{(0)}(\tau, \mu)}{d \mu}=\int d \tau^{\prime} 2 \Gamma_{\text {cusp }}^{g}\left(2\left[\frac{\theta\left(\tau-\tau^{\prime}\right)}{\tau-\tau^{\prime}}\right]_{+}-\log \left(\frac{\mu^{2}}{Q^{2}}\right) \delta\left(\tau-\tau^{\prime}\right)\right) S_{g, \delta}^{(0)}\left(\tau^{\prime}, \mu\right)
$$

- Multiplying by τ, we find

$$
\mu \frac{d}{d \mu} \tau S_{g, \delta}^{(0)}(\tau, \mu)=\int d \tau^{\prime}\left(\left(\tau-\tau^{\prime}\right)+\tau^{\prime}\right) 2 \Gamma_{\text {cusp }}^{g}\left(2\left[\frac{\theta\left(\tau-\tau^{\prime}\right)}{\tau-\tau^{\prime}}\right]_{+}-\log \left(\frac{\mu^{2}}{Q^{2}}\right) \delta\left(\tau-\tau^{\prime}\right)\right) S_{g, \delta}^{(0)}\left(\tau^{\prime}, \mu\right)
$$

- Simplifying, we have

$$
\mu \frac{d}{d \mu} \tau S_{g, \delta}^{(0)}(\tau, \mu)=\int d \tau^{\prime} 4 \Gamma_{\text {cusp }}^{g} \theta\left(\tau-\tau^{\prime}\right) S_{g, \delta}^{(0)}\left(\tau^{\prime}, \mu\right)+\int d \tau^{\prime} \gamma_{g}^{S}\left(\tau-\tau^{\prime}\right) \tau^{\prime} S_{g, \delta}^{(0)}\left(\tau^{\prime}, \mu\right)
$$

- Performing the integral, we have

$$
\mu \frac{d}{d \mu} \tau S_{g, \delta}^{(0)}(\tau, \mu)=4 \Gamma_{\text {cusp }}^{g} S_{g, \theta}^{(2)}(\tau, \mu)+\int d \tau^{\prime} \gamma_{g}^{S}\left(\tau-\tau^{\prime}, \mu\right) \tau^{\prime} S_{g, \delta}^{(0)}\left(\tau^{\prime}, \mu\right)
$$

- Here we have defined a new power suppressed soft function

$$
S_{g, \theta}^{(2)}(\tau, \mu)=\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \theta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle
$$

θ-Function Operators

- At subleading power we require θ-jet and θ-soft functions

$$
\begin{aligned}
J_{\mathcal{B}_{n}, \theta}^{(2)}(\tau, \mu) & =\frac{(2 \pi)^{3}}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{B}_{n \perp}^{\mu a}(0) \delta(Q+\overline{\mathcal{P}}) \delta^{2}\left(\mathcal{P}_{\perp}\right) \theta(\tau-\hat{\tau}) \mathcal{B}_{n \perp, \omega}^{\mu a}(0)|0\rangle \\
S_{g, \theta}^{(2)}(\tau, \mu) & =\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \theta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle
\end{aligned}
$$

- They are power suppressed due to $\theta(\tau) \sim 1$ instead of $\delta(\tau) \sim 1 / \tau$.

- Arise only through mixing at cross section level.
- We find this type of mixing is a generic behavior at subleading power.
- Returning to our perturbative calculation of the subleading power soft function

$$
\left.S_{g, \tau \delta}^{(2)}(\tau, \mu)\right|_{\mathcal{O}\left(\alpha_{s}\right)}=2 \iint_{\nu_{n}}^{\operatorname{cof}} \frac{y_{\bar{n}}(\tau-1)}{\nu_{n}}=g^{2} \theta(\tau)\left(\frac{1}{\epsilon}+\log \left(\frac{\mu^{2}}{(Q \tau)^{2}}\right)+\mathcal{O}(\epsilon)\right)
$$

- UV divergence now easily understood as mixing with θ function operator, which is non-vanishing at lowest order

$$
\left.S_{g, \theta}^{(2)}(\tau, \mu)\right|_{\mathcal{O}\left(\alpha_{s}^{0}\right)}=\mathcal{Y}_{n}
$$

- Similar θ function counterterm observed by Paz in subleading power jet function at one-loop. Our example enables us to prove their all orders structure.

Gauge Invariant Ultrasoft Fields

- At subleading power, explicit ultrasoft fields appear.
- Wilson lines from field redefinition can be arranged into gauge invariant "gluon" operators plus Wilson lines (analogous to $\mathcal{B}_{\perp n}$ at leading power).

$Y_{n_{i}}^{(r) \dagger} i D_{u s}^{(r) \mu} Y_{n_{i}}^{(r)}=i \partial_{u s}^{\mu}+\left[Y_{n_{i}}^{(r) \dagger} i D_{u s}^{(r) \mu} Y_{n_{i}}^{(r)}\right]=i \partial_{u s}^{\mu}+T_{(r)}^{a} g \mathcal{B}_{u s(i)}^{a \mu}$
- Provides gauge invariant description of soft sector at subleading power.

Matrix Element Corrections

[Moult, Stewart, Vita]

- Matrix element corrections arise from operators involving an additional $\mathcal{B}_{n \perp}, \mathcal{B}_{u s}$ or $\partial_{u s}$.
- We have performed an explicit matching to the required operators

$$
\begin{aligned}
& \mathcal{O}_{\mathcal{P} B 1}^{(2)}=C_{\mathcal{P} \mathcal{B} 1}^{(2)} i^{a b c} \mathcal{B}_{n \perp, \omega_{1}}^{a} \cdot\left[\mathcal{P}_{\perp} \mathcal{B}_{\bar{n} \perp, \omega_{2}}^{b} \cdot\right] \mathcal{B}_{\bar{n} \perp, \omega_{3}}^{c} H \\
& \mathcal{O}_{\mathcal{P B} 2}^{(2)}=C_{\mathcal{P} \mathcal{B} 2}^{(2)} i^{a b c}\left[\mathcal{P}_{\perp} \cdot \mathcal{B}_{\bar{n} \perp, \omega_{3}}^{a}\right] \mathcal{B}_{n \perp, \omega_{1}}^{b} \cdot \mathcal{B}_{\perp \bar{n}, \omega_{2}}^{c} H
\end{aligned}
$$

$$
u s \mathcal{O}_{\mathcal{B}(u s(n))}^{(2)}=C_{\mathcal{B}(u s(n))}^{(2)}\left(i f^{a b d}\left(\mathcal{Y}_{n}^{T} \mathcal{Y}_{\bar{n}}\right)^{d c}\right)\left(\mathcal{B}_{n \perp, \omega_{1}}^{a} \cdot \mathcal{B}_{\bar{n} \perp, \omega_{2}}^{b} \bar{n} \cdot g \mathcal{B}_{u s(n)}^{c}\right) \text {, }
$$

$$
\sqrt{n} \mathcal{O}_{\mathcal{B}(u s(\bar{n}))}^{(2)}=C_{\mathcal{B}(u s(\bar{n}))}^{(2)}\left(i^{a b d}\left(\mathcal{Y}_{\bar{n}}^{T} \mathcal{Y}_{n}\right)^{d c}\right)\left(\mathcal{B}_{n \perp, \omega_{1}}^{a} \cdot \mathcal{B}_{\bar{n} \perp, \omega_{2}}^{b} n \cdot g \mathcal{B}_{u s(\bar{n})}^{c}\right)
$$

$$
\begin{aligned}
& \mathcal{O}_{\partial \mathcal{B}(u s)(0)}^{(2)}=C_{n \cdot \partial}^{(2)} \mathcal{B}_{\perp n, \omega_{1}}^{\mu a} \text { in } \cdot \partial \mathcal{B}_{\perp \bar{n}, \omega_{2}}^{\mu b}\left(\mathcal{Y}_{\bar{n}}^{T} \mathcal{Y}_{n}\right)^{a b} H \\
& \mathcal{O}_{\partial \mathcal{B}(u s)(\overline{0})}^{(2)}=C_{\bar{n} \cdot \partial}^{(2)} \mathcal{B}_{\perp \bar{n}, \omega_{2}}^{\mu a} i \bar{n} \cdot \partial \mathcal{B}_{\perp n, \omega_{1}}^{\mu b}\left(\mathcal{Y}_{\bar{n}}^{T} \mathcal{Y}_{n}\right)^{a b} H
\end{aligned}
$$

- Wilson coefficients of soft operators are fixed to all orders using RPI:

$$
{C_{\mathcal{B}(u s(n))}^{(2)}}_{\mathrm{xed}^{(2)}}=-\frac{\partial C^{(0)}}{\partial \omega_{1}}
$$

- By RG consistency, it is sufficient to consider the power suppressed soft function, involving a $\partial_{u s}$ or $\mathcal{B}_{u s}$
$\left.\frac{1}{N_{c}} \operatorname{tr}\langle |\left|\mathcal{Y}_{n}^{T}(x) \mathcal{Y}_{n}(x) \bar{n} \cdot \mathcal{B}_{u s(n)}(x) \delta\left(\tau_{u s}-\hat{\tau}_{u s}\right) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)\right| 0\right\rangle=\int \frac{d^{4} r}{(2 \pi)^{4}} e^{-i r \cdot \times} S_{n \mathcal{B}_{u s}}^{(2)}\left(\tau_{u s}, r\right)$
which appears in the factorization as

$$
\begin{aligned}
\frac{d \sigma_{\mathcal{B}}^{(2)}}{d \tau}= & H_{\bar{n} \cdot \mathcal{B}}\left(Q^{2}\right) \int d \tau_{n} d \tau_{\bar{n}} d \tau_{u s} \delta\left(\tau-\tau_{n}-\tau_{\bar{n}}-\tau_{u s}\right) \\
\quad \cdot & {\left[\int \frac{d^{4} r}{(2 \pi)^{4}} S_{n B_{u s}}^{(2)}\left(\tau_{u s}, r\right)\right] \cdot\left[\int \frac{d k^{-}}{2 \pi} \mathcal{J}_{\bar{n}}\left(\tau_{\bar{n}}, k^{-}\right)\right] \cdot\left[\int \frac{d 1^{+}}{2 \pi} \mathcal{J}_{n}\left(\tau_{n}, r^{+}\right)\right] }
\end{aligned}
$$

- These operators mix with a θ function soft function just as with the 'illustrative' example considered above. Resummation is identical.

$$
\mu \frac{d}{d \mu}\binom{S_{n \mathcal{B}_{u s}}(\tau, \mu)}{S_{g, \theta}(\tau, \mu)}=\int d \tau^{\prime}\left(\begin{array}{cc}
\gamma_{g, \delta}^{S}\left(\tau-\tau^{\prime}, \mu\right) & \gamma_{n \mathcal{B}_{u s} \rightarrow \theta} \delta\left(\tau-\tau^{\prime}\right) \\
0 & \gamma_{g, \delta}^{S}\left(\tau-\tau^{\prime}, \mu\right)
\end{array}\right)\binom{S_{n \mathcal{B}}\left(\tau_{u s}^{\prime}, \mu\right)}{S_{g, \theta}\left(\tau^{\prime}, \mu\right)}
$$

Kinematic Corrections

- Kinematic corrections arise from
- Phase space
- Thrust observable definition (does not contribute at LL)
- Phase space corrections can be treated through choice of routing

$$
\begin{gathered}
\frac{1}{\left(Q+k_{s}\right)^{2}}=\frac{1}{Q^{2}}-\frac{n \cdot k_{s}}{Q^{3}}-\frac{\bar{n} \cdot k_{s}}{Q^{3}}+\mathcal{O}\left(\tau^{2}\right) \\
S_{g, \tau \delta}^{(2)}(\tau, \mu)=\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \tau \delta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle
\end{gathered}
$$

- Are described by the 'illustrative' example considered above

$$
\mu \frac{d}{d \mu}\binom{S_{g, \tau \delta}^{(2)}(\tau, \mu)}{S_{g, \theta}^{(2)}(\tau, \mu)}=\int d \tau^{\prime}\left(\begin{array}{cc}
\gamma_{g, \tau \delta \rightarrow \tau \delta}^{S}\left(\tau-\tau^{\prime}, \mu\right) & \gamma_{g, \tau \delta \rightarrow \theta}^{S} \delta\left(\tau-\tau^{\prime}\right) \\
0 & \gamma_{g, \theta \rightarrow \theta}^{S}\left(\tau-\tau^{\prime}, \mu\right)
\end{array}\right)\binom{S_{g, \tau \delta}^{(2)}\left(\tau^{\prime}, \mu\right)}{S_{g, \theta}^{(2)}\left(\tau^{\prime}, \mu\right)}
$$

Fixed Order Check

- We can explicitly check this result by fixed order calculation of the power corrections.
- RG consistency for $1 / \epsilon$ poles implies that the LL power correction can be computed only from hard-collinear contributions:

- Expanding known results for $H \rightarrow 3$ partons at NNLO [Gehrmann et al.], we can analytically compute the power corrections to $\mathcal{O}\left(\alpha_{s}^{3}\right)$:

$$
\frac{1}{\sigma_{0}^{H}} \frac{\mathrm{~d} \sigma^{H}}{\mathrm{~d} \tau}=\frac{\alpha_{s}}{4 \pi} 8 C_{A} \log \tau-\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} 32 C_{A}^{2} \log ^{3} \tau+\left(\frac{\alpha_{s}}{4 \pi}\right)^{3} 64 C_{A}^{3} \log ^{5} \tau+\mathcal{O}\left(\alpha_{s}^{4}\right)
$$

- Provides a highly non-trivial check on the correctness of our all orders resummation.

