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e Motivations for studying
Perturbative Power Corrections

e Power Corrections for N-Jettiness
Subtractions at Fixed Order
for DY and Higgs production

e Resummation at Subleading Power

e Leading Log Resummation at
Next-to-Leading Power for Thrust




Limits of QCD

e Significant progress in understanding QCD made by considering
limits where we have a power expansion in some small kinematic
quantity.

Collinear Soft Regge
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e All orders behavior described by factorization theorems (eg. thrust):
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Power Corrections for Event Shapes

e Standard factorization theorems describe only leading power
term.

e More generally, can consider expanding an observable in 7
do S sy log™ T
= Z (f) Z o) <g7>+ Leading Power (LP)
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Power Corrections for Event Shapes

e Standard factorization theorems describe only leading power
term.

e More generally, can consider expanding an observable in 7
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e Why do we want to understand power corrections?




Some applications of Next to Leading Power calculations

Matching resummation with FO

If an observable 7 needs resummation:

e Use Leading Power EFT for resummed XS at small 7

e Forlarge T use Fixed Order calculation to get full O(a) contribution
o Need matching procedure in transition region between the two.

e Computing Power Corrections analytically extends domain of validity
of the EFT to larger values of 7 == smaller transition regions —>

smaller uncertainties from matching procedure

Bootstrap

Power corrections provide constraints to
completely reconstruct amplitudes or cross
sections from limits.
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More Applications: Fixed Order Subtractions

e |R divergences in fixed order calculations can be regulated using event shape

observables. [Boughezal, Focke, Petriello, Liu], [Gaunt, Stahlhofen, Tackmann, Walsh]
Tcut
o(X) = 'T / T
dTN dTN
TCLI[

e Want 7y to isolate collinear and soft singularities around an N-jet configuration.

Tcut (X)
a(X) /dTN a7
/dT dTn T !
0

Compute using factorization Additional jet resolved.
in soft/collinear limits:

d
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N



Power Corrections for NLO Subtractions

Tl\iut
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. N ™n
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Power Correction
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Power corrections at Fixed Order
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Power corrections at FO: General Setup

e We want to compute fully differential cross hemlSpherEb Y/ femlSpherea
\ 1/ Py
. do . . N o) // -
section IPdvaT for color singlet production \\ KLY )
(O-jettiness) including O(as) and O(T/Q) \
T\ Y
corrections to LO. A ( \“:::_(__,;pli‘
e Power corrections in O(T/Q): ]
o Perturbative e
e NOT higher twist PDFs/non-perturbative power corrections. '

e O(T/Q) corrections contained in:
e Phase space: & = ¢(0) 4 %cb(?) + 0(%22)

e Matrix element squared: |M|2 = AQ) 4+ %A(2) + 0(%22)

; . do dz D@ 1 T A6 1 T 22)a(0 T
Schematically: WN/7{A( )¢()+5A()®()+6A( 16| + 0 &’as



Power corrections at FO:

full NLO results for pp — H

[Ebert, Moult, Stewart

nn, GV, Zhu]
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Power Corrections for Event Shapes: what next?

e So far, we have seen FO calculation of NLO Next to Leading
Power (NLP) term

do _ i (0‘5)"3:1 ) <|0ng> Leading Power (LP)
dr e 47 = m T n & rower
+ (%) (a1 log T + ap) NLO NLP
+(%;)2(aglog3T+azlog2T+...) NNLO NLP
+(%;)3(35I0g57'+a4|og47'+...) N3LO NLP

+ ...

e Can we predict these logs using resummation techniques at
subleading powers?

e Let's start with the LL series



Leading Log Resummation at

Next-to-Leading Power for Thrust in

(Moult, Stewart, GV, Zhu) [1804.04665]



SC ET [Bauer, Fleming, Pirjol, Stewart]

e SCET describes soft and collinear radiation in the presence of
a hard scattering.

\J

e Allows for a factorized description: Hard, Jet, Beam, Soft func-
tions

do
FIv {Eﬂ;trHNIIJK,. D @ Jy S, ® Fo)if); ® s @+ @ f oy ® F



leed Order Ca ICU Iatlon [Freedman], [Moult, Rothen, Stewart, Tackmann, Zhu]

e Compute power corrections for Higgs thrust (H — gg) at lowest order

. T) - C +log Qli2>]9(7')+(9(a§)

e No virtual corrections at lowest order (6(7) ~ 1/71).
e Divergences cancel between soft and collinear.
e Log appears at first non-vanishing order:

e At LP, log(7)/T arises from RG evolution of 6(7)
e At NLP log(7) arises from RG evolution of “nothing”?



LL Resummation for Thrust at NLP

[Moult, Stewart, Vita, Zhu]

e Analogously to what we have seen at FO, power corrections arise from two
distinct sources:

e Power corrections to scattering amplitudes.
e Power corrections to kinematics.

e Power corrections to scattering amplitudes can be computed from subleading
SCET Operators [Moult, Stewart, GV]




Renormalization of subleading soft functions

[Moult, Stewart, Vita, Zhu]

e The subleading jet and soft functions satisfy a 2 x 2 mixing RG

d Sek.ran) my,p) M2 52 (y.m)
N@ =
) .
Sé-g(y'/ 1) 0 Y22(y, 11) SQ’g(y, 1)

e Solving this equation to renormalize the operators, and resum
subleading power logarithms.

S (r, 1) (0137 (0)Vn(0)0(r — )V (0)Va(0)0)

o 1
BRCEEE

e They are power suppressed due to 8(7) ~ 1 instead of 6(7) ~ 1/7.

e We find this type of mixing is a generic behavior at subleading power. (see also
S.Jaskiewicz's talk)



Resummed Soft Function

e We find the final result for the renormalized subleading power soft
function:

L Lo log? (A
10 st (2o 6
e Expanded perturbatively, we see a simple series:

2 W 1 o
S, (@r, ) = 6(7) [“/12 log (E) + 572 log? (a) +- }

e In particular, we find

e First log generated by mixing with the 6 function operators.
e The single log is then dressed by Sudakov double logs from the
diagonal anomalous dimensions.

e Example also useful for understanding power suppressed RG consis-
tency.



LL Resummation for Thrust at NLP

[Moult, Stewart, Vita, Zhu]

e Complete result given by sum of two contributions.

2 (2) (2)
idi_L) _ 1dogu N 1 4oy,

og dr oo dr oo dr
e Both have same Sudakov = can be directly added.
e Obtain the LL resummed result for pure glue H — gg thrust
2)
1 dO'( « 2 checked with
_ LL — ( S) 8CA |Og(7—)ef%srrgusp |0g (T) FO calculation
oo dr 47 up to O(a)
e Provides the first all orders resummation £ "7 7T T T
for an event shape at subleading power. L e 3
b ‘ S ]og : NLP Fixed Order (x4) E
T 8 5
-8 E — NLP LL a,(p) (x4)
e Very simple result. Subleading E
power LL driven by cusp anomalous T T e
dimension! S e e




Conclusions

e Computed O(as) power correction of
differential cross section for color singlet
production including LL and NLL

e Cross section level renormalization at
subleading power involves a new RG
structure involving mixing in crucial
way.

e Achieved first all orders resummation at
subleading power for an event shape ob-
servable.
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Conclusions

e Computed O(as) power correction of
differential cross section for color singlet
production including LL and NLL
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Backup slides



Power corrections at FO: PDF expansion

hemisphere b / hemisph
o Need to keep track of O(7) component of mo- Cnsp er\e Y,’ ennspherea

menta: both for phase space expansion and N\ kb (Y) )

mandelstams entering |M|?. AN

e Solving Q and Y measurements uniquely fixes
how factors of 7 enters the PDFs.

Example n-collinear emission, kT ~T,k~ ~Q:

k—e™Y\ T k- T2\
pff:QeY[(lJ,- 2 )+6E+O(&):|% n“:(l,(lo,l)
3 _ n* =(1,0,0,-1)
wo_ —-Y I(Y L) (E)}ﬁ n (777
Py = Qe [1+Qe+2Q tol@)] 2

e At subleading power both PDF momenta contain power corrections regardless of the
direction of the emission = derivative of both PDFs

X, T X, T X,
- o) ~e(Gram) == (3) e (3)
T power corrections from Ecm ES) Q Z3 Q Za

residual momenta in PDFs b T T ,
fp ~ o | % + EAb = fp (%) + EAbfb ()

for an n-collinear emission:
Eem




Power corrections at FO: Master formulae

e Expansion of phase space and matrix element squared in soft and

collinear limits has a general (universal) structure

n-Collinear Master Formula for 0-Jettiness power corrections

da'E,Z) 1 % z5 (QTeY
dQ2dydT x, Za (1—za)¢

a

)_ {fafb AD(Q, Y, z,)

1+

Y G 2

e T (1—2z3)*—2 1-—2z, Z,

—AO 1 r £l fof,!
+ P Q alp 22 + X3 27 2Tb + Xp 2z, alp

Soft Master Formula for 0-Jettiness power corrections
d0‘§2) 172 5(0) P e¥ P, e¥ _
szdeTN; Q {A (Q,Y)|:fafb<*efy*7 JrXaefyfafb*Xbeafb

+ 66 [polx‘f’(o, Y) + %Z\(E)(O, Y)H




Power corrections at FO: Cross section results

e Combining soft and collinear kernels, % poles cancel (consistency check)

and the differential cross section takes the form:

leEdzb{ff}C%")(za,zb,T) f,fcf( "2y, 25, T) + bef’C,(rf,)(za,zb,T)}

Savar = 00(8)" [ Iy, 2

dQ2dYdT

e Example for gg channel in H production:
Y 212
(2,1) (1+2,)(1 — 2 + 2;)
C/(zay 2p, T) = 4C §(1—za) | =1 —1)s(1 — T Lo(1 —
i (22,25, T) g Y (1-z )[( " n ) (1 —2z)+ 22 o(1 — 2)

(l—za+z)
TP i B VY T
Ao 2 (1—2)

e Extension to NNLO has been computed for the LL term
[Moult, Rothen, Stewart, Tackmann, Zhu], [Boughezal, Liu, Petriello]



An Important lllustrative Example . -

e Consider the power suppressed soft function:

tr(0[)7 (0)V(0) 7 (7 — #)¥,] (0)Va(0)[0)

@ __ 1
Sg,q—é(’rv ”) - (Ng _ 1)

e This soft function vanishes at lowest order

e What renormalizes this function?



An Important lllustrative Example . -

e Consider the power suppressed soft function:

tr(0[)7 (0)V(0) 7 (7 — #)¥,] (0)Va(0)[0)

@ __ 1
Sg,q—é(’rv ”) - (Ng _ 1)

e This soft function vanishes at lowest order

e What renormalizes this function?
= Mixing with another operator!



An Important lllustrative Example . -

e We can use a simple trick to find the missing operator.

. The RG for the leading power soft function is known:

T, ) -7 2 ’ ’
0t ([2222] () -
+

° I\/Iultlplylng by 7, we find

o(r — 7' 2
u—-rso ™, 1) /d-r -7+ )2I'§uap <2|: (T_T/):|+7log (%) 5(7_77,/)> Sg)é(TI)N)

e Simplifying, we have

MfTS" (o) = [ ar’ arfy 00 = 15O + [ ar'afr = sy )

e Performing the integral, we have

eSO ) = iy SEh () + [ @25 = 7 SO )

e Here we have defined a new power suppressed soft function

1 ~
SO (7, 1) = mtr«w{ (©Ya(0)6(r — #)V, (0)¥3(0)0)



O-Function Operators

e At subleading power we require 6-jet and 6-soft functions

2r)3
Jg")ﬁ(’r, n) = (,\(12 _) 1)tr<0

52 (r.m) =

B4 (0)8(Q + P)§*(PL) 6(r — ) BLT (0) ‘0>

nl,w

tr(0[Y7 (0)(0)0(r — 7)), (0)¥5(0)[0)

(N2 —-1)

y”,

e They are power suppressed due to 6(7) ~ 1
instead of 0(7) ~ 1/7.

yll

e Arise only through mixing at cross section level.

e We find this type of mixing is a generic behavior at subleading
power.



Perturbative View

e Returning to our perturbative calculation of the subleading
power soft function

e UV divergence now easily understood as mixing with 6 function
operator, which is non-vanishing at lowest order

e Similar 0 function counterterm observed by Paz in subleading power jet function
at one-loop. Our example enables us to prove their all orders structure.



Gauge Invariant Ultrasoft Fields

e At subleading power, explicit ultrasoft fields appear.

e Wilson lines from field redefinition can be arranged into gauge
invariant “gluon” operators plus Wilson lines (analogous to B ,
at leading power).

stir)TiDl(l;)Hstir) = iaﬁs + [Y’Sfr) T’.Dl(lg)uyfsir)] = iaﬁs + T(ar)gBj/s/(i)

e Provides gauge invariant description of soft sector at subleading
power.



Matrix Element Corrections

. . . [Moult, Stewart, Vi!:a] .
e Matrix element corrections arise from operators involving an

additional B, , Bys or Jys.

e We have performed an explicit matching to the required oper-
ators

2 2) . ab b
O(P)Bl = C;?lsl”ca CBZi,wl . [’PLBEL,WQ'} BgL,ugH’

2) . ab b
C‘(P)Bz’fa ‘ [PJ_ 'B;L,%] Byl wy Biﬁ,w2H

ﬁ)dc) (BiL,wl . BgLMQﬁ . gBEs(n)) ,

n)dc) (BiL,wl : Bi’:L,wzn : gBZs(ﬁ))

\ “\ (2) _ ~(2) ppa . pb T ab
( s A O (us)(0) = CnpB'Tn oy in - OB (V5 V) ™H,

win n o\ o o .
' g)B(us)(ﬁ) = Crs?zaB‘Lﬁ,wz’” : BBIL[;,M (V3 Vo)™ H
e Wilson coefficients of soft operators are fixed oc©)

c@

to all orders using RPI: Blus(m) =~ g



Factorization for Matrix Element Corrections

e By RG consistency, it is sufficient to consider the power sup-
pressed soft function, invoIving a Oys Or Bus

71! x (2)
S (Tuss 1)

1
g TOIVT (VAR - Bus(r)(96(ras — 715 @V(0)10) = / o

which appears in the factorization as

(2)

do

LBusin _ = Hy.5(Q dTpdTrdTys0(T — Th — Th — Tus
n-B

dr
d*r () dk= drt N
- [/ (Qﬂ)4sn,3us(fus,r)] - [/ ——Talm k )] : [/Tynm ™)
e These operators mix with a 6 function soft function just as

with the ‘illustrative’ example considered above. Resummation
is identical.

— MQ(T)
€

i( nBus ™ u) ) /dT < wga(f—f 1) AnBus—od(T = 7') >( Snis,s (7' 1) )

n
du Sg,0(T 7:,5(7'*7'/;/1) Sg.o(r, 1)



Kinematic Corrections

o Kinematic corrections arise from
e Phase space
e Thrust observable definition (does not contribute at LL)

e Phase space corrections can be treated through choice of rout-

&) 5(rom) = (0|5 (0)V(0)7 8(r — #)V, (0)V5(0)|0)

(N2 —1)

e Are described by the ‘illustrative’ example considered above

ui Sg)ré(-r, w) _ / dr! 'y;,ﬂ;_m;(r — 7w 'yg,ﬂsﬁeé(f —7") 5‘;215(7’&)
du 5,572,)9(7—' w) 0 “/gygﬁg(r — 7' Sﬁ)g('r/,u)



Fixed Order Check

e We can explicitly check this result by fixed order calculation of the
power corrections.

e RG consistency for 1/¢ poles implies that the LL power correction
can be computed only from hard-collinear contributions:

— [Moult, Rothen, Stewart, Tackmann, Zhu]

()
N—-1 N
Hard Loops
e Expanding known results for H — 3 partons at NNLO [cehrmann et al],
we can analytically compute the power corrections to O(a3):

1 dot « s\ 2 «
— % 8Calog T — (4;) 32C2log® 7 + (45

a(’)" dr 47 T

3
) 64C3log” 7+ O(ad)

e Provides a highly non-trivial check on the correctness of our
all orders resummation.



