Next to Leading Power Corrections: Resummation and Improving Fixed Order Subtractions

Gherardo Vita

DESY Theory Workshop 2018 Hamburg, 26 September 2018

[Moult, Stewart, GV, Zhu] 1804.04665 and

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] 1807.10764

Outline

 Motivations for studying Perturbative Power Corrections

 Power Corrections for N-Jettiness Subtractions at Fixed Order for DY and Higgs production

• Resummation at Subleading Power

 Leading Log Resummation at Next-to-Leading Power for Thrust

Limits of QCD

 Significant progress in understanding QCD made by considering limits where we have a power expansion in some small kinematic quantity.

• All orders behavior described by factorization theorems (eg. thrust):

$$\frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}\tau} = \mathbf{H}^{(0)} \mathcal{J}_{\tau}^{(0)} \otimes \mathcal{J}_{\tau}^{(0)} \otimes \mathcal{S}_{\tau}^{(0)} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q\tau}, \tau\right)$$

3

Power Corrections for Event Shapes

- Standard factorization theorems describe only leading power term.
- ullet More generally, can consider expanding an observable in au

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(0)} \left(\frac{\log^m \tau}{\tau}\right)_+ \quad \text{Leading Power (LP)}$$

$$+ \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(2)} \log^m \tau \quad \text{Next to Leading Power (NLP)}$$

$$+ \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(4)} \tau \log^m \tau$$

$$+ \cdots$$

$$= \frac{d\sigma^{(0)}}{d\tau} + \frac{d\sigma^{(2)}}{d\tau} + \frac{d\sigma^{(4)}}{d\tau} + \cdots$$

Power Corrections for Event Shapes

- Standard factorization theorems describe only leading power term.
- ullet More generally, can consider expanding an observable in au

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(0)} \left(\frac{\log^m \tau}{\tau}\right)_{+} \quad \text{Leading Power (LP)}$$

$$+ \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(2)} \log^m \tau \quad \text{Next to Leading Power (NLP)}$$

$$+ \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(4)} \tau \log^m \tau$$

$$+ \cdots$$

$$= \frac{d\sigma^{(0)}}{d\tau} + \frac{d\sigma^{(2)}}{d\tau} + \frac{d\sigma^{(4)}}{d\tau} + \cdots$$

• Why do we want to understand power corrections?

Some applications of Next to Leading Power calculations

Matching resummation with FO

If an observable τ needs resummation:

- ullet Use Leading Power EFT for resummed XS at small au
- For large au use Fixed Order calculation to get full $\mathcal{O}(\alpha_s^n)$ contribution
- Need matching procedure in transition region between the two.
- Computing Power Corrections analytically extends domain of validity
 of the EFT to larger values of τ ⇒ smaller transition regions ⇒
 smaller uncertainties from matching procedure

Bootstrap

Power corrections provide constraints to completely reconstruct amplitudes or cross sections from limits.

Remaining Parameters in	Constraint	L=2	L = 3	L = 4
6-Point MHV Remainder	1. Integrability	75	643	5897
	 Total S₃ symmetry 	20	151	1224
Function	3. Parity invariance	18	120	874
	 Collinear vanishing (T⁰) 	4	59	622
LL All Powers	5. OPE leading discontinuity	0	26	482
	6. Final entry	0	2	113
NLP, NNLP \longrightarrow	7. Multi-Regge limit	0	2	80
	 Near-collinear OPE (T¹) 	0	0	4
	 Near-collinear OPE (T²) 	0	0	0

Taming log divergence of NLP

Issue in adding log divergent fixed order power correction to resummed LP cross section demands resummation also at NLP

More Applications: Fixed Order Subtractions

 IR divergences in fixed order calculations can be regulated using event shape observables.
 [Boughezal, Focke, Petriello, Liu], [Gaunt, Stahlhofen, Tackmann, Walsh]

$$\sigma(X) = \int_{0}^{\infty} d\mathcal{T}_{N} \frac{d\sigma(X)}{d\mathcal{T}_{N}} = \int_{0}^{\mathcal{T}_{N}^{\text{cut}}} d\mathcal{T}_{N} \frac{d\sigma(X)}{d\mathcal{T}_{N}} + \int_{\mathcal{T}_{N}^{\text{cut}}} d\mathcal{T}_{N} \frac{d\sigma(X)}{d\mathcal{T}_{N}}$$

• Want T_N to isolate collinear and soft singularities around an N-jet configuration.

$$\int_{0}^{\mathcal{T}_{N}^{\text{cut}}} d\mathcal{T}_{N} \frac{d\sigma(X)}{d\mathcal{T}_{N}}$$

$$\int\limits_{\mathcal{T}_N^{\text{cut}}} d\mathcal{T}_N \frac{d\sigma(X)}{d\mathcal{T}_N}$$

Compute using factorization in soft/collinear limits:

$$\frac{d\sigma}{d\tau_N} = HB_a \otimes B_b \otimes \frac{S}{S} \otimes J_1 \otimes \cdots \otimes J_{N-1} \left[1 + \mathcal{O}(\tau_N) \right]$$

Power Corrections for NLO Subtractions

$$\int_{0}^{T_{N}^{\text{cut}}} d\mathcal{T}_{N} \frac{d\sigma(X)}{d\mathcal{T}_{N}}, \qquad \frac{d\sigma}{d\tau_{N}} = HB_{a} \otimes B_{b} \otimes S \otimes J_{1} \otimes \cdots \otimes J_{N-1} + \mathcal{O}(\tau_{N})$$

- Error, $\Delta \sigma(\tau_{\rm cut})$, (or computing time) can be exponentially improved by analytically computing power corrections.
- Understanding of power corrections crucial for applications to more complicated processes.

Power Correction

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [1807.10764]

Power corrections at Fixed Order

(Ebert, Moult, Stewart, Tackmann, GV, Zhu) [1807.10764]

Power corrections at FO: General Setup

We want to compute **fully differential cross** section $\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\mathrm{d}Y\mathrm{d}\mathcal{T}}$ for color singlet production (0-jettiness) including $\mathcal{O}(\alpha_s)$ and $\mathcal{O}(\mathcal{T}/Q)$ corrections to LO.

- Power corrections in O(T/Q):
 - Perturbative
 - NOT higher twist PDFs/non-perturbative power corrections.
- $\mathcal{O}(\mathcal{T}/Q)$ corrections contained in:

• Phase space:
$$\Phi = \Phi^{(0)} + \frac{\mathcal{T}}{Q}\Phi^{(2)} + \mathcal{O}(\frac{\mathcal{T}^2}{Q^2})$$

• Matrix element squared: $|\mathcal{M}|^2 = A^{(0)} + \frac{\mathcal{T}}{Q}A^{(2)} + \mathcal{O}(\frac{\mathcal{T}^2}{Q^2})$

$$\mbox{Schematically:} \quad \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\mathrm{d}Y\mathrm{d}\mathcal{T}} \sim \int \frac{\mathrm{d}z}{z} \left[A^{(0)} \Phi^{(0)} + \frac{\mathcal{T}}{Q} A^{(0)} \Phi^{(2)} + \frac{\mathcal{T}}{Q} A^{(2)} \Phi^{(0)} \right] + \mathcal{O} \bigg(\frac{\mathcal{T}^2}{Q^2}, \alpha_{\mathrm{s}}^2 \bigg)$$

9

Power corrections at FO: full NLO results for $pp \rightarrow H$

[Ebert, Moult, Stewart, Tackm $p \rightarrow H$ (13 TeV) $pp \rightarrow H$ (13 TeV)	ann, GV, Zhu] [1807.10764]
10-5	
10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹	į.
10 ⁻¹	
$a_1L \qquad pp ightarrow H \ (13 { m TeV})$	
$ \frac{1}{10^{-2}} \frac{10^{-2}}{10^{-2}} = \frac{10^{-2}}{10^{-2}} 10^{-$	
$\begin{array}{c c} & 10^{-2} & \text{full nons.} \\ \hline & 10^{-2} & \text{full nons.} \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	
$-$ full- a_1L-a_0	
₹ 10 ⁻³	
5 10-4	
7 10 7	
10-5	
10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹	i
10 10 10 10 10	

 $au_{
m cut} = \mathcal{T}_{
m cut}/Q$

$$F_{
m NLO}(au) = rac{{
m d}}{{
m d} \ln au} \Big\{ au ig[a_1 \ln au + a_0 + \mathcal{O}(au) ig] \Big\}$$

Numerical fit matches analytic calculation within 1 σ at percent level.

NLO $\mathcal{T}_0^{\mathrm{lep}}$ gg $ o$ Hg	a ₁	a ₀
earlier fit	$+0.6090 \pm 0.0060$	$+0.1824 \pm 0.0043$
analytic	+0.6040	+0.1863
NLO $\mathcal{T}_0^{\mathrm{lep}}$ gq $ o$ Hq	a ₁	a ₀
earlier fit	-0.0373 ± 0.0007	-0.42552 ± 0.00032
analytic	-0.0381	-0.42576
	earlier fit analytic	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Power Corrections for Event Shapes: what next?

 So far, we have seen FO calculation of NLO Next to Leading Power (NLP) term

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(0)} \left(\frac{\log^m \tau}{\tau}\right)_+ \qquad \text{Leading Power (LP)}$$

$$+ \left(\frac{\alpha_s}{4\pi}\right) \left(a_1 \log \tau + a_0\right) \qquad \qquad \text{NLO NLP}$$

$$+ \left(\frac{\alpha_s}{4\pi}\right)^2 \left(a_3 \log^3 \tau + a_2 \log^2 \tau + \dots\right) \qquad \qquad \text{NNLO NLP}$$

$$+ \left(\frac{\alpha_s}{4\pi}\right)^3 \left(a_5 \log^5 \tau + a_4 \log^4 \tau + \dots\right) \qquad \qquad \text{N}^3 \text{LO NLP}$$

$$+ \dots$$

- Can we predict these logs using resummation techniques at subleading powers?
- Let's start with the LL series

Leading Log Resummation at Next-to-Leading Power for Thrust in H o gg

(Moult, Stewart, GV, Zhu) [1804.04665]

 SCET describes soft and collinear radiation in the presence of a hard scattering.

Allows for a factorized description: Hard, Jet, Beam, Soft functions

$$\frac{d\sigma}{d\mathcal{M}_1\cdots} = \sum_{\{\kappa\}} \operatorname{tr} H_{\kappa} \mathcal{I} \mathcal{I} J_{\kappa_i} \otimes \cdots \otimes J_{\kappa_j} S_{\kappa_s} \otimes f_{\boldsymbol{p}/i} f_{\boldsymbol{p}/j} \otimes f_{k \to H} \otimes \cdots \otimes f_{l \to H} \otimes F$$

• Compute power corrections for Higgs thrust $(H \to gg)$ at lowest order

$$\begin{split} \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma^{(2)}}{\mathrm{d}\tau} &= 8 C_A \left(\frac{\alpha_s}{4\pi}\right) \left[\left(\frac{1}{\epsilon} + \log \frac{\mu^2}{Q^2 \tau}\right) - \left(\frac{1}{\epsilon} + \log \frac{\mu^2}{Q^2 \tau^2}\right) \right] \theta(\tau) + \mathcal{O}(\alpha_s^2) \\ &= 8 C_A \left(\frac{\alpha_s}{4\pi}\right) \log \tau \ \theta(\tau) + \mathcal{O}(\alpha_s^2) \end{split}$$

- No virtual corrections at lowest order $(\delta(\tau) \sim 1/\tau)$.
- Divergences cancel between soft and collinear.
- Log appears at first non-vanishing order:
 - At LP, $\log(\tau)/\tau$ arises from RG evolution of $\delta(\tau)$
 - At NLP $\log(\tau)$ arises from RG evolution of "nothing"?

- Analogously to what we have seen at FO, power corrections arise from two distinct sources:
 - Power corrections to scattering amplitudes.
 - Power corrections to kinematics.
- Power corrections to scattering amplitudes can be computed from subleading SCET operators [Moult, Stewart, GV]

 They give rise to new jet and soft functions, whose renormalization was not previously known

ullet The subleading jet and soft functions satisfy a 2 imes 2 mixing RG

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \begin{pmatrix} \tilde{S}_{g,\mathcal{B}_{us}}^{(2)}(y,\mu) \\ \tilde{S}_{g,\theta}^{(2)}(y,\mu) \end{pmatrix} = \begin{pmatrix} \gamma_{11}(y,\mu) & \gamma_{12} \\ 0 & \gamma_{22}(y,\mu) \end{pmatrix} \begin{pmatrix} \tilde{S}_{g,\mathcal{B}_{us}}^{(2)}(y,\mu) \\ \tilde{S}_{g,\theta}^{(2)}(y,\mu) \end{pmatrix}$$

 Solving this equation to renormalize the operators, and resum subleading power logarithms.

$$S_{g,\theta}^{(2)}(\tau,\mu) = \frac{1}{(N_c^2-1)} \mathrm{tr} \langle 0 | \mathcal{Y}_{\bar{n}}^{\mathcal{T}}(0) \mathcal{Y}_{n}(0) \theta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{\mathcal{T}}(0) \mathcal{Y}_{\bar{n}}(0) | 0 \rangle$$

- They are power suppressed due to $\theta(\tau) \sim 1$ instead of $\delta(\tau) \sim 1/\tau$.
- We find this type of mixing is a generic behavior at subleading power. (see also S.Jaskiewicz's talk)

Resummed Soft Function

 We find the final result for the renormalized subleading power soft function:

$$S_{g,\mathcal{B}_{us}}^{(2)}(Q au,\mu) = heta(au)\gamma_{12}\log\left(rac{\mu}{Q au}
ight)e^{rac{1}{2}\gamma_{11}\log^2\left(rac{\mu}{Q au}
ight)}$$

• Expanded perturbatively, we see a simple series:

$$S_{g,\mathcal{B}_{\mathsf{US}}}^{(2)}(Q\tau,\mu) = \theta(\tau) \left[\frac{1}{\gamma_{12} \log \left(\frac{\mu}{Q\tau}\right)} + \frac{1}{2} \gamma_{12} \gamma_{11} \log^3 \left(\frac{\mu}{Q\tau}\right) + \cdots \right]$$

- In particular, we find
 - First log generated by **mixing** with the θ function operators.
 - The single log is then dressed by Sudakov double logs from the diagonal anomalous dimensions.
- Example also useful for understanding power suppressed RG consistency.

• Complete result given by sum of two contributions.

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathrm{LL}}^{(2)}}{\mathrm{d}\tau} = \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathrm{kin,LL}}^{(2)}}{\mathrm{d}\tau} + \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathrm{hard,LL}}^{(2)}}{\mathrm{d}\tau}$$

- Both have same Sudakov ⇒ can be directly added.
- Obtain the LL resummed result for pure glue $H \rightarrow gg$ thrust

$$\boxed{\frac{1}{\sigma_0}\frac{\mathrm{d}\sigma_{\mathrm{LL}}^{(2)}}{\mathrm{d}\tau} = \left(\frac{\alpha_{\mathrm{s}}}{4\pi}\right)8C_{\!A}\log(\tau)e^{-\frac{\alpha_{\mathrm{s}}}{4\pi}\Gamma_{\mathrm{cusp}}^{\mathrm{g}}\log^2(\tau)}}^{\mathrm{checked with}}_{\substack{\mathrm{FO \ calculation}\\\mathrm{up \ to}\ \mathcal{O}(\alpha_{\mathrm{s}}^3)}}^{\mathrm{checked \ with}}$$

- Provides the first all orders resummation for an event shape at subleading power.
- Very simple result. Subleading power LL driven by cusp anomalous dimension!

Conclusions

• Computed $\mathcal{O}(\alpha_s)$ power correction of differential cross section for color singlet production including LL and NLL

 Cross section level renormalization at subleading power involves a new RG structure involving mixing in crucial way.

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \begin{pmatrix} \tilde{S}_{g,\mathcal{B}_{ac}}^{(2)}(y,\mu) \\ \\ \tilde{S}_{g,\theta}^{(2)}(y,\mu) \end{pmatrix} = \begin{pmatrix} \gamma_{11}(y,\mu) & \gamma_{12} \\ \\ 0 & \gamma_{22}(y,\mu) \end{pmatrix} \begin{pmatrix} \tilde{S}_{g,\mathcal{B}_{ac}}^{(2)}(y,\mu) \\ \\ \tilde{S}_{g,\theta}^{(2)}(y,\mu) \end{pmatrix}$$

 Achieved first all orders resummation at subleading power for an event shape observable.

$$\boxed{\frac{1}{\sigma_0}\frac{\mathrm{d}\sigma_{\mathsf{LL}}^{(2)}}{\mathrm{d}\tau} = \left(\frac{\alpha_{\mathsf{s}}}{4\pi}\right)8C_A\log(\tau)\mathrm{e}^{-\frac{\alpha_{\mathsf{s}}}{4\pi}\Gamma_{\mathsf{cusp}}^{\mathsf{g}}\log^2(\tau)}}$$

Conclusions

• Computed $\mathcal{O}(\alpha_s)$ power correction of differential cross section for color singlet production including LL and NLL

 Cross section level renormalization at subleading power involves a new RG structure involving mixing in crucial way.

$$\mu^{\frac{\mathrm{d}}{\mathrm{d}\mu}}\begin{pmatrix} \tilde{S}^{(2)}_{g,\mathcal{B}_{os}}(y,\mu) \\ \\ \tilde{S}^{(2)}_{g,\theta}(y,\mu) \end{pmatrix} = \begin{pmatrix} \gamma_{11}(y,\mu) & \gamma_{12} \\ \\ 0 & \gamma_{22}(y,\mu) \end{pmatrix} \begin{pmatrix} \tilde{S}^{(2)}_{g,\mathcal{B}_{os}}(y,\mu) \\ \\ \tilde{S}^{(2)}_{g,\theta}(y,\mu) \end{pmatrix}$$

 Achieved first all orders resummation at subleading power for an event shape observable.

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathsf{LL}}^{(2)}}{\mathrm{d}\tau} = \left(\frac{\alpha_s}{4\pi}\right) 8C_A \log(\tau) e^{-\frac{\alpha_s}{4\pi} \Gamma_{\mathsf{cusp}}^{\mathsf{g}} \log^2(\tau)}$$

Thank you!

Backup slides

Power corrections at FO: PDF expansion

• Need to keep track of $\mathcal{O}(\mathcal{T})$ component of momenta: both for phase space expansion and mandelstams entering $|\mathcal{M}|^2$.

mandelstams entering $|\mathcal{M}|^2$.

• Solving Q and Y measurements uniquely fixes

how factors of \mathcal{T} enters the PDFs.

Example *n*-collinear emission, $k^+ \sim T$, $k^- \sim Q$:

$$p_{a}^{\mu} = Q e^{Y} \left[\left(1 + \frac{k^{-} e^{-Y}}{Q} \right) + \frac{T}{Q} \frac{k^{-}}{2Q} + \mathcal{O} \left(\frac{T^{2}}{Q^{2}} \right) \right] \frac{n^{\mu}}{2}$$

$$p_{b}^{\mu} = Q e^{-Y} \left[1 + \frac{T}{Q} \left(e^{Y} + \frac{k^{-}}{2Q} \right) + \mathcal{O} \left(\frac{T^{2}}{Q^{2}} \right) \right] \frac{\bar{n}^{\mu}}{2}$$

$$n^{\mu} = (1, 0, 0, 1)$$

$$\bar{n}^{\mu} = (1, 0, 0, -1)$$

 At subleading power both PDF momenta contain power corrections regardless of the direction of the emission

derivative of both PDFs

$$\mathcal T$$
 power corrections from residual momenta in PDFs for an *n*-collinear emission:

$$\begin{split} f_{a}\left(\frac{p_{a}}{E_{cm}}\right) &\sim f_{a}\left(\frac{x_{a}}{z_{a}} + \frac{\mathcal{T}}{Q}\Delta_{a}\right) = f_{a}\left(\frac{x_{a}}{z_{a}}\right) + \frac{\mathcal{T}}{Q}\Delta_{a}f_{a}'\left(\frac{x_{a}}{z_{a}}\right) \\ f_{b}\left(\frac{p_{b}}{E_{cm}}\right) &\sim f_{b}\left(x_{b} + \frac{\mathcal{T}}{Q}\Delta_{b}\right) = f_{b}\left(x_{b}\right) + \frac{\mathcal{T}}{Q}\Delta_{b}f_{b}'\left(x_{b}\right) \end{split}$$

hemisphere b

hemisphere a

Power corrections at FO: Master formulae

 Expansion of phase space and matrix element squared in soft and collinear limits has a general (universal) structure

n-Collinear Master Formula for 0-Jettiness power corrections

$$\begin{split} \frac{\mathrm{d}\sigma_{n}^{(2)}}{\mathrm{d}Q^{2}\mathrm{d}Y\mathrm{d}\mathcal{T}} &\sim \int_{x_{a}}^{1} \frac{\mathrm{d}z_{a}}{z_{a}} \frac{z_{a}^{\epsilon}}{(1-z_{a})^{\epsilon}} \left(\frac{Q\mathcal{T}e^{Y}}{\rho}\right)^{-\epsilon} \left\{ f_{a}f_{b} A^{(2)}(Q,Y,z_{a}) \right. \\ &\left. + \frac{e^{Y}}{\rho} A^{(0)} \frac{\mathcal{T}}{Q} \left[f_{a}f_{b} \frac{(1-z_{a})^{2}-2}{2z_{a}} + x_{a} \frac{1-z_{a}}{2z_{a}} f_{a}'f_{b} + x_{b} \frac{1+z_{a}}{2z_{a}} f_{a}f_{b}' \right] \right\} \end{split}$$

Soft Master Formula for 0-Jettiness power corrections

$$\begin{split} \frac{\mathrm{d}\sigma_s^{(2)}}{\mathrm{d}Q^2\mathrm{d}Y\mathrm{d}\mathcal{T}} \sim \frac{1}{\epsilon} \frac{\mathcal{T}^{-2\epsilon}}{Q} \bigg\{ \bar{A}^{(0)}(Q,Y) \bigg[f_a f_b \bigg(-\frac{\rho}{e^Y} - \frac{e^Y}{\rho} \bigg) + x_a \frac{\rho}{e^Y} f_a' f_b + x_b \frac{e^Y}{\rho} f_a f_b' \bigg] \\ + f_a f_b \left[\rho Q \, \bar{A}_+^{(2)}(Q,Y) + \frac{Q}{\rho} \, \bar{A}_-^{(2)}(Q,Y) \right] \bigg\} \end{split}$$

Power corrections at FO: Cross section results

• Combining soft and collinear kernels, $\frac{1}{\epsilon}$ poles cancel (consistency check) and the differential cross section takes the form:

$$\frac{\mathrm{d}\sigma^{(2,n)}}{\mathrm{d}Q^{2}\mathrm{d}Y\mathrm{d}\mathcal{T}} = \hat{\sigma}^{\mathrm{LO}}\big(\frac{\alpha_{s}}{4\pi}\big)^{n} \int_{x_{a}}^{1} \int_{x_{b}}^{1} \frac{\mathrm{d}z_{a}}{z_{a}} \frac{\mathrm{d}z_{b}}{z_{b}} \Bigg[f_{i}f_{j} C_{f_{i}f_{j}}^{(2,n)}(z_{a},z_{b},\mathcal{T}) + \frac{x_{a}}{z_{a}} f_{i}'f_{j} C_{f_{i}'f_{j}}^{(2,n)}(z_{a},z_{b},\mathcal{T}) + \frac{x_{b}}{z_{b}} f_{i}f_{j}' C_{f_{i}f_{j}'}^{(2,n)}(z_{a},z_{b},\mathcal{T}) \Bigg]$$

• Example for gg channel in H production:

$$\begin{split} C_{f_g'f_g}^{(2,1)}(z_a,z_b,\mathcal{T}) &= 4C_A \, \frac{\rho}{Q e^Y} \, \delta(1-z_a) \Big[\Big(-\ln \frac{\mathcal{T} e^Y}{Q \rho} - 1 \Big) \delta(1-z_b) + \frac{(1+z_b)(1-z_b+z_b^2)^2}{2z_b^2} \, \mathcal{L}_0(1-z_b) \Big] \\ &+ 4C_A \, \frac{e^Y}{Q \rho} \, \frac{(1-z_a+z_a^2)^2}{2z_a} \, \delta(1-z_b) \end{split}$$

 Extension to NNLO has been computed for the LL term [Moult, Rothen, Stewart, Tackmann, Zhu], [Boughezal, Liu, Petriello] • Consider the power suppressed soft function:

$$S_{g,\tau\delta}^{(2)}(\tau,\mu) = \frac{1}{(N_c^2-1)} \mathrm{tr} \langle 0 | \mathcal{Y}_{\bar{n}}^T(0) \mathcal{Y}_n(0) \, \tau \, \, \delta(\tau-\hat{\tau}) \mathcal{Y}_n^T(0) \mathcal{Y}_{\bar{n}}(0) | 0 \rangle$$

This soft function vanishes at lowest order

$$S_{g,\tau\delta}^{(2)}(\tau,\mu)\Big|_{\mathcal{O}(\alpha_s^0)} = \bigvee_{\substack{j \\ j \\ j \\ j \\ j}} \overline{j}_{n} \bigvee_{\bar{n}} = \tau\delta(\tau) = 0$$

It has a UV divergence at the first order

$$S_{g,\tau\delta}^{(2)}(\tau,\mu)\Big|_{\mathcal{O}(\alpha_{\mathfrak{S}})} = 2 \underbrace{ \int_{\tau\delta(\tau-\hat{\tau})}^{\mathcal{Y}_{\overline{h}}}}_{\mathcal{Y}_{n}} = g^{2}\theta(\tau)\left(\frac{1}{\epsilon} + \log\left(\frac{\mu^{2}}{(Q\tau)^{2}}\right) + \mathcal{O}(\epsilon)\right)$$

What renormalizes this function?

• Consider the power suppressed soft function:

$$S_{g,\tau\delta}^{(2)}(\tau,\mu) = \frac{1}{(N_c^2-1)} \mathrm{tr} \langle 0 | \mathcal{Y}_{\bar{n}}^T(0) \mathcal{Y}_n(0) \, \tau \, \, \delta(\tau-\hat{\tau}) \mathcal{Y}_n^T(0) \mathcal{Y}_{\bar{n}}(0) | 0 \rangle$$

This soft function vanishes at lowest order

$$S_{g,\tau\delta}^{(2)}(\tau,\mu)\Big|_{\mathcal{O}(\alpha_{s}^{0})} = \bigvee_{\substack{j \\ |k\delta(k-\hat{\tau}) \\ j}} \bigvee_{n} = \tau\delta(\tau) = 0$$

It has a UV divergence at the first order

$$S_{g,\tau\delta}^{(2)}(\tau,\mu)\Big|_{\mathcal{O}(\alpha_{\mathfrak{S}})} = 2 \underbrace{ \int_{\tau\delta(\tau-\hat{\tau})}^{\gamma_{\overline{n}}} \mathcal{Y}_{\overline{n}}}_{\tau\delta(\tau-\hat{\tau})} = g^{2}\theta(\tau)\left(\frac{1}{\epsilon} + \log\left(\frac{\mu^{2}}{(Q\tau)^{2}}\right) + \mathcal{O}(\epsilon)\right)$$

• What renormalizes this function?

⇒ Mixing with another operator!

- We can use a simple trick to find the missing operator.
- The RG for the leading power soft function is known:

$$\mu \frac{dS_{g,\delta}^{(0)}(\tau,\mu)}{d\mu} = \int d\tau' \, 2\Gamma_{\text{cusp}}^g \left(2 \left[\frac{\theta(\tau-\tau')}{\tau-\tau'} \right]_+ - \log \left(\frac{\mu^2}{Q^2} \right) \delta(\tau-\tau') \right) S_{g,\delta}^{(0)}(\tau',\mu)$$

• Multiplying by τ , we find

$$\mu \frac{d}{d\mu} \tau S_{g,\delta}^{(0)}(\tau,\mu) = \int d\tau' ((\tau-\tau')+\tau') \, 2\Gamma_{\mathrm{cusp}}^g \left(2 \left[\frac{\theta(\tau-\tau')}{\tau-\tau'} \right]_+ - \log \left(\frac{\mu^2}{Q^2} \right) \delta(\tau-\tau') \right) S_{g,\delta}^{(0)}(\tau',\mu)$$

Simplifying, we have

$$\mu \frac{d}{d\mu} \tau S_{g,\delta}^{(0)}(\tau,\mu) = \int d\tau' \ 4\Gamma_{\mathrm{cusp}}^g \theta(\tau-\tau') S_{g,\delta}^{(0)}(\tau',\mu) + \int d\tau' \gamma_g^S(\tau-\tau') \tau' S_{g,\delta}^{(0)}(\tau',\mu)$$

Performing the integral, we have

$$\mu \frac{d}{d\mu} \tau S_{g,\delta}^{(0)}(\tau,\mu) = 4 \Gamma_{\mathrm{cusp}}^g \ S_{g,\theta}^{(2)}(\tau,\mu) + \int d\tau' \gamma_g^S(\tau-\tau',\mu) \tau' S_{g,\delta}^{(0)}(\tau',\mu)$$

• Here we have defined a new power suppressed soft function

$$S_{g,\theta}^{(2)}(\tau,\mu) = \frac{1}{(N_{z}^{2}-1)} \mathrm{tr} \langle 0|\mathcal{Y}_{\bar{n}}^{T}(0)\mathcal{Y}_{n}(0)\theta(\tau-\hat{\tau})\mathcal{Y}_{n}^{T}(0)\mathcal{Y}_{\bar{n}}(0)|0\rangle$$

θ -Function Operators

• At subleading power we require θ -jet and θ -soft functions

$$J_{\mathcal{B}_{n},\theta}^{(2)}(\tau,\mu) = \frac{(2\pi)^{3}}{(N_{c}^{2}-1)} \operatorname{tr}\left\langle 0 \middle| \mathcal{B}_{n\perp}^{\mu a}(0) \, \delta(Q+\bar{\mathcal{P}}) \delta^{2}(\mathcal{P}_{\perp}) \, \theta(\tau-\hat{\tau}) \, \mathcal{B}_{n\perp,\omega}^{\mu a}(0) \middle| 0 \right\rangle$$

$$S_{g,\theta}^{(2)}(\tau,\mu) = \frac{1}{(N_{c}^{2}-1)} \operatorname{tr}\left\langle 0 \middle| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \theta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0) \middle| 0 \right\rangle$$

• They are power suppressed due to $\theta(\tau) \sim 1$ instead of $\delta(\tau) \sim 1/\tau$.

• Arise only through mixing at cross section level.

• We find this type of mixing is a generic behavior at subleading power.

Perturbative View

 Returning to our perturbative calculation of the subleading power soft function

$$\left.S_{g,\tau\delta}^{(2)}(\tau,\mu)\right|_{\mathcal{O}(\alpha_{\delta})}=2\left(\sqrt{\frac{1}{\epsilon}}\right)^{\mathcal{Y}_{\overline{n}}}=g^{2}\theta(\tau)\left(\frac{1}{\epsilon}+\log\left(\frac{\mu^{2}}{(Q\tau)^{2}}\right)+\mathcal{O}(\epsilon)\right)$$

ullet UV divergence now easily understood as mixing with heta function operator, which is non-vanishing at lowest order

$$\left. \mathcal{S}_{\mathbf{g}, heta}^{(2)}(au,\mu)
ight|_{\mathcal{O}(lpha_{\mathbf{s}}^{\mathbf{0}})} = \left. \begin{array}{c} \mathcal{Y}_{ar{n}} & \\ \mathcal{Y}_{ar{n}} & \\ \mathcal{Y}_{ar{n}} & \\ \mathcal{Y}_{ar{n}} & \\ \mathcal{Y}_{ar{n}} & \end{array}
ight|_{\mathcal{O}(\lambda_{\mathbf{s}}^{\mathbf{0}})} = heta(au)$$

ullet Similar heta function counterterm observed by Paz in subleading power jet function at one-loop. Our example enables us to prove their all orders structure.

27

Gauge Invariant Ultrasoft Fields

- At subleading power, explicit ultrasoft fields appear.
- Wilson lines from field redefinition can be arranged into gauge invariant "gluon" operators plus Wilson lines (analogous to $\mathcal{B}_{\perp n}$ at leading power).

$$Y_{n_i}^{(r)\,\dagger} i D_{us}^{(r)\,\mu} Y_{n_i}^{(r)} = i \partial_{us}^{\mu} + [Y_{n_i}^{(r)\,\dagger} i D_{us}^{(r)\,\mu} Y_{n_i}^{(r)}] = i \partial_{us}^{\mu} + T_{(r)}^{a} g \mathcal{B}_{us(i)}^{a\mu}$$

 Provides gauge invariant description of soft sector at subleading power.

Matrix Element Corrections

[Moult, Stewart, Vita]

- Matrix element corrections arise from operators involving an additional $\mathcal{B}_{n\perp}$, \mathcal{B}_{us} or ∂_{us} .
- We have performed an explicit matching to the required operators

$$\mathcal{O}_{\mathcal{P}\mathcal{B}1}^{(2)} = C_{\mathcal{P}\mathcal{B}1}^{(2)} i f^{abc} \mathcal{B}_{n\perp,\omega_{1}}^{a} \cdot \left[\mathcal{P}_{\perp} \mathcal{B}_{\bar{n}\perp,\omega_{2}}^{b} \cdot \right] \mathcal{B}_{\bar{n}\perp,\omega_{3}}^{c} H \,,$$

$$\mathcal{O}_{\mathcal{P}\mathcal{B}2}^{(2)} = C_{\mathcal{P}\mathcal{B}2}^{(2)} i f^{abc} \left[\mathcal{P}_{\perp} \cdot \mathcal{B}_{\bar{n}\perp,\omega_{3}}^{a} \right] \mathcal{B}_{n\perp,\omega_{1}}^{b} \cdot \mathcal{B}_{\bar{n}\perp,\omega_{2}}^{c} H \,,$$

$$\mathcal{O}_{\mathcal{P}\mathcal{B}2}^{(2)} = C_{\mathcal{P}\mathcal{B}2}^{(2)} i f^{abc} \left[\mathcal{P}_{\perp} \cdot \mathcal{B}_{\bar{n}\perp,\omega_{3}}^{a} \right] \mathcal{B}_{n\perp,\omega_{1}}^{b} \cdot \mathcal{B}_{\perp\bar{n},\omega_{2}}^{c} H \,,$$

$$\mathcal{O}_{\mathcal{B}(us(n))}^{(2)} = C_{\mathcal{B}(us(n))}^{(2)} \left(i f^{abd} \left(\mathcal{Y}_{n}^{T} \mathcal{Y}_{n} \right)^{dc} \right) \left(\mathcal{B}_{n\perp,\omega_{1}}^{a} \cdot \mathcal{B}_{\bar{n}\perp,\omega_{2}}^{b} \bar{n} \cdot \mathcal{B}_{us(\bar{n})}^{c} \right) \,,$$

$$\mathcal{O}_{\mathcal{B}(us(\bar{n}))}^{(2)} = C_{\mathcal{B}(us(\bar{n}))}^{(2)} \left(i f^{abd} \left(\mathcal{Y}_{n}^{T} \mathcal{Y}_{n} \right)^{dc} \right) \left(\mathcal{B}_{n\perp,\omega_{1}}^{a} \cdot \mathcal{B}_{\bar{n}\perp,\omega_{2}}^{b} \bar{n} \cdot \mathcal{B}_{us(\bar{n})}^{c} \right) \,,$$

$$\mathcal{O}_{\mathcal{B}(us(\bar{n}))}^{(2)} = C_{n-\partial}^{(2)} \mathcal{B}_{\perp n,\omega_{1}}^{\mu a} i \bar{n} \cdot \partial \mathcal{B}_{\perp \bar{n},\omega_{2}}^{\mu b} \left(\mathcal{Y}_{\bar{n}}^{T} \mathcal{Y}_{n} \right)^{ab} H \,,$$

$$\mathcal{O}_{\mathcal{B}(us(\bar{n}))}^{(2)} = C_{n-\partial}^{(2)} \mathcal{B}_{\perp \bar{n},\omega_{2}}^{\mu a} i \bar{n} \cdot \partial \mathcal{B}_{\perp \bar{n},\omega_{2}}^{\mu b} \left(\mathcal{Y}_{\bar{n}}^{T} \mathcal{Y}_{n} \right)^{ab} H \,,$$

$$\mathcal{O}_{\mathcal{B}(us(\bar{n}))}^{(2)} = C_{n-\partial}^{(2)} \mathcal{B}_{\perp \bar{n},\omega_{2}}^{\mu a} i \bar{n} \cdot \partial \mathcal{B}_{\perp \bar{n},\omega_{2}}^{\mu b} \left(\mathcal{Y}_{\bar{n}}^{T} \mathcal{Y}_{n} \right)^{ab} H \,,$$

• Wilson coefficients of soft operators are fixed to all orders using RPI: $C_{\mathcal{B}(us(n))}^{(2)} = -\frac{\partial C^{(0)}}{\partial \omega_1}$

Factorization for Matrix Element Corrections

• By RG consistency, it is sufficient to consider the power suppressed soft function, involving a ∂_{us} or \mathcal{B}_{us}

$$\frac{1}{\textit{N}_{\textit{C}}} \text{tr} \langle 0 | \mathcal{Y}_{\bar{\textit{n}}}^{\textit{T}}(x) \mathcal{Y}_{\textit{n}}(x) \bar{\textit{n}} \cdot \mathcal{B}_{\textit{us}(\textit{n})}(x) \delta(\tau_{\textit{us}} - \hat{\tau}_{\textit{us}}) \mathcal{Y}_{\textit{n}}^{\textit{T}}(0) \mathcal{Y}_{\bar{\textit{n}}}(0) | 0 \rangle = \int \frac{d^{4}r}{(2\pi)^{4}} e^{-ir \cdot x} S_{\textit{n}\mathcal{B}_{\textit{us}}}^{(2)}(\tau_{\textit{us}}, r)$$

which appears in the factorization as

$$\begin{split} \frac{d\sigma_{\mathcal{B}_{us},n}^{(2)}}{d\tau} &= H_{\bar{n}\cdot\mathcal{B}}(Q^2) \int d\tau_n d\tau_{\bar{n}} d\tau_{us} \delta(\tau - \tau_n - \tau_{\bar{n}} - \tau_{us}) \\ & \cdot \left[\int \frac{d^4r}{(2\pi)^4} S_{n\mathcal{B}_{us}}^{(2)}(\tau_{us},r) \right] \cdot \left[\int \frac{dk^-}{2\pi} \mathcal{J}_{\bar{n}}(\tau_{\bar{n}},k^-) \right] \cdot \left[\int \frac{dl^+}{2\pi} \mathcal{J}_n(\tau_n,l^+) \right] \end{split}$$

ullet These operators mix with a heta function soft function just as with the 'illustrative' example considered above. Resummation is identical.

$$egin{array}{c} \mathcal{Y}_{ar{n}} & \mathcal{Y}_{ar{n}} \ \mathcal{B}_{us} & \mathcal{Y}_{n} \end{array} = rac{\gamma_{n}\mathcal{B}_{us}
ightarrow heta}{\epsilon} heta(au)$$

$$\mu\frac{d}{d\mu}\left(\begin{array}{c} S_{n\mathcal{B}_{\text{US}}}(\tau,\mu) \\ S_{g,\theta}(\tau,\mu) \end{array}\right) = \int d\tau' \left(\begin{array}{cc} \gamma_{g,\delta}^{\text{S}}(\tau-\tau',\mu) & \gamma_{n\mathcal{B}_{\text{US}}\to\theta}\delta(\tau-\tau') \\ 0 & \gamma_{g,\delta}^{\text{S}}(\tau-\tau',\mu) \end{array}\right) \left(\begin{array}{c} S_{n\mathcal{B}_{\text{US}}}(\tau',\mu) \\ S_{g,\theta}(\tau',\mu) \end{array}\right)$$

Kinematic Corrections

- Kinematic corrections arise from
 - Phase space
 - Thrust observable definition (does not contribute at LL)

Phase space corrections can be treated through choice of rout-

Are described by the 'illustrative' example considered above

$$\mu\frac{d}{d\mu}\left(\begin{array}{c} S_{g,\tau\delta}^{(2)}(\tau,\mu) \\ S_{g,\theta}^{(2)}(\tau,\mu) \end{array}\right) = \int d\tau' \left(\begin{array}{cc} \gamma_{g,\tau\delta\to\tau\delta}^S(\tau-\tau',\mu) & \gamma_{g,\tau\delta\to\theta}^S\delta(\tau-\tau') \\ 0 & \gamma_{g,\theta\to\theta}^S(\tau-\tau',\mu) \end{array}\right) \left(\begin{array}{c} S_{g,\tau\delta}^{(2)}(\tau',\mu) \\ S_{g,\theta}^{(2)}(\tau',\mu) \end{array}\right)$$

Fixed Order Check

- We can explicitly check this result by fixed order calculation of the power corrections.
- RG consistency for $1/\epsilon$ poles implies that the LL power correction can be computed only from hard-collinear contributions:

[Moult, Rothen, Stewart, Tackmann, Zhu]

• Expanding known results for $H \to 3$ partons at NNLO [Gehrmann et al.], we can analytically compute the power corrections to $\mathcal{O}(\alpha_s^3)$:

$$\frac{1}{\sigma_0^H} \frac{\mathrm{d}\sigma^H}{\mathrm{d}\tau} = \frac{\alpha_s}{4\pi} 8C_A \log \tau - \left(\frac{\alpha_s}{4\pi}\right)^2 32C_A^2 \log^3 \tau + \left(\frac{\alpha_s}{4\pi}\right)^3 64C_A^3 \log^5 \tau + \mathcal{O}(\alpha_s^4)$$

 Provides a highly non-trivial check on the correctness of our all orders resummation.